Automated Reencoding of Boolean Formulas

  • Norbert Manthey
  • Marijn J. H. Heule
  • Armin Biere
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7857)


We present a novel preprocessing technique to automatically reduce the size of Boolean formulas. This technique, called Bounded Variable Addition (BVA), exchanges clauses for variables. Similar to other preprocessing techniques, BVA greedily lowers the sum of variables and clauses, a rough measure for the hardness to solve a formula. We show that cardinality constraints (CCs) can efficiently be reencoded: from a naive CC encoding, BVA automatically generates a compact encoding, which is smaller than sophisticated encodings. Experimental results show that applying BVA can improve SAT solving performance.


Conjunctive Normal Form Boolean Formula Cardinality Constraint Variable Elimination Direct Encode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equivalence checking. In: DATE, pp. 114–121 (2001)Google Scholar
  2. 2.
    Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combinational equivalence checking. In: Hassoun, S. (ed.) ICCAD, pp. 836–843. ACM (2006)Google Scholar
  3. 3.
    Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable sequential equivalence checking across arbitrary design transformations. In: ICCD. IEEE (2006)Google Scholar
  4. 4.
    Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based alignability algorithm for hardware equivalence verification. In: FMCAD, pp. 20–26. IEEE Computer Society (2007)Google Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of bdds. In: DAC, pp. 317–320 (1999)Google Scholar
  6. 6.
    Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Hunt Jr., W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Safarpour, S., Marques-Silva, J.P., Veneris, A.G.: Automated design debugging with maximum satisfiability. IEEE Trans. on CAD of Integrated Circuits and Systems 29(11), 1804–1817 (2010)CrossRefGoogle Scholar
  8. 8.
    Marques Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: DAC, pp. 530–535. ACM (2001)Google Scholar
  10. 10.
    Mishchenko, A., Chatterjee, S., Brayton, R.K.: Dag-aware aig rewriting a fresh look at combinational logic synthesis. In: DAC, pp. 532–535 (2006)Google Scholar
  11. 11.
    Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 272–286. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better CNF generation. In: DATE, pp. 1590–1595. IEEE (2009)Google Scholar
  13. 13.
    Guerra e Silva, L., Miguel Silveira, L., Marques Silva, J.P.: Algorithms for solving boolean satisfiability in combinational circuits. In: DATE, pp. 526–530. IEEE Computer Society (1999)Google Scholar
  14. 14.
    Ganai, M.K., Ashar, P., Gupta, A., Zhang, L., Malik, S.: Combining strengths of circuit-based and CNF-based algorithms for a high-performance SAT solver. In: DAC, pp. 747–750. ACM (2002)Google Scholar
  15. 15.
    Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2(1-4), 1–26 (2006)zbMATHGoogle Scholar
  17. 17.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Report Series Technical Report 10/1, Johannes Kepler University, Linz, Austria (2010)Google Scholar
  19. 19.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT instances in the presence of symmetry. In: DAC 2002, pp. 731–736. ACM, New York (2002)Google Scholar
  23. 23.
    Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. IEEE Trans. on CAD of Integrated Circuits and Systems 24(3), 305–317 (2005)CrossRefGoogle Scholar
  24. 24.
    Marques-Silva, J.P., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: DATE, pp. 408–413. IEEE (2008)Google Scholar
  25. 25.
    Quimper, C.-G., López-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 542–556. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Quimper, C.-G., Walsh, T.: Beyond finite domains: The all different and global cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 812–816. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Zanarini, A., Pesant, G.: Generalizations of the global cardinality constraint for hierarchical resources. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 361–375. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Régin, J.-C.: Combination of among and cardinality constraints. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)Google Scholar
  33. 33.
    Condrat, C., Kalla, P.: A gröbner basis approach to CNF-formulae preprocessing. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 618–631. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Warners, J.P., van Maaren, H.: A two-phase algorithm for solving a class of hard satisfiability problems. Operations Research Letters 23(3-5), 81–88 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Küchlin, W., Sinz, C.: Proving consistency assertions for automotive product data management. J. Autom. Reasoning 24(1/2), 145–163 (2000)zbMATHCrossRefGoogle Scholar
  38. 38.
    Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assignment. Constraints 4(1), 79–89 (1999)zbMATHCrossRefGoogle Scholar
  39. 39.
    Le Berre, D., Parrain, A.: The sat4j library, release 2.2, system description. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 7, 59–64 (2010)Google Scholar
  40. 40.
    Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp: Progress report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 509–514. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. 41.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  42. 42.
    Liffiton, M.H., Maglalang, J.C.: A cardinality solver: More expressive constraints for free - (poster presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 485–486. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  43. 43.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for sat. J. Artif. Int. Res. 32(1), 565–606 (2008)zbMATHGoogle Scholar
  44. 44.
    Prestwich, S.D.: Variable Dependency in Local Search: Prevention Is Better Than Cure. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 107–120. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  45. 45.
    Chen, J.: A New SAT Encoding of the At-Most-One Constraint. In: Proceedings of ModRef 2011 (2011)Google Scholar
  46. 46.
    Ben-Haim, Y., Ivrii, A., Margalit, O., Matsliah, A.: Perfect hashing and CNF encodings of cardinality constraints. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 397–409. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  47. 47.
    Bonet, M.L., John, K.S.: Efficiently calculating evolutionary tree measures using SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 4–17. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  48. 48.
    Anton, C.: An improved satisfiable SAT generator based on random subgraph isomorphism. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS (LNAI), vol. 6657, pp. 44–49. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Norbert Manthey
    • 1
  • Marijn J. H. Heule
    • 2
    • 3
  • Armin Biere
    • 3
  1. 1.Institute of Artificial IntelligenceTechnische Universität DresdenGermany
  2. 2.Department of Computer ScienceThe University of Texas at AustinUSA
  3. 3.Institute for Formal Models and VerificationJohannes Kepler UniversityAustria

Personalised recommendations