Advertisement

Dempster-Shafer Theory with Smoothness

  • Ronald Böck
  • Stefan Glüge
  • Andreas Wendemuth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8032)

Abstract

This paper introduces the idea of a modified Dempster-Shafer theory. We adapt the belief characteristic of expert combination by introducing a penalty term which is specific to the investigated object. This approach is motivated by the observation that final decisions in the Dempster-Shafer theory might tend to fluctuations due to variations in sensor inputs on small time scales, even if the real phenomenological characteristic is stable.

Keywords

Penalty Term Combination Rule Belief Function Skin Conductance Level Basic Probability Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böck, R., Limbrecht, K., Siegert, I., Glüge, S., Walter, S., Wendemuth, A.: Combining mimic and prosodic analyses for user disposition classification. In: Proceedings of the 23. Konferenz Elektronische Sprachsignalverarbeitung (ESSV 2012), pp. 220–228 (2012)Google Scholar
  2. 2.
    Böck, R., Limbrecht, K., Walter, S., Hrabal, D., Traue, H.C., Glüge, S., Wendemuth, A.: Intraindividual and interindividual multimodal emotion analyses in human-machine-interaction. In: 2012 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), pp. 59–64 (2012)Google Scholar
  3. 3.
    Dempster, A.P.: A generalization of bayesian inference. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer Theory of Belief Functions. STUDFUZZ, vol. 219, pp. 73–104. Springer, Heidelberg (2008); reprint of a talk given at a Research Methods Meeting of the Royal Statistical Society (February 14, 1968)CrossRefGoogle Scholar
  4. 4.
    Kennes, R., Smets, P.: Fast algorithms for Dempster-Shafer theory. In: Bouchon-Meunier, B., Zadeh, L.A., Yager, R.R. (eds.) IPMU 1990. LNCS, vol. 521, pp. 14–23. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Koelstra, S., Mühl, C., Patras, I.: Eeg analysis for implicit tagging of video data. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, pp. 1–6. IEEE (2009)Google Scholar
  6. 6.
    Krell, G., Glodek, M., Panning, A., Siegert, I., Michaelis, B., Wendemuth, A., Schwenker, F.: Fusion of fragmentary classifier decisions for affective state recognition. In: Proceedings of the First IAPR Workshop on Multimodal Pattern Recognition of Social Signals in Human Computer Interaction, Tsukuba Science City, Japan (2012) (to appear)Google Scholar
  7. 7.
    Dupin de Saint-Cyr, F., Lang, J., Sabatier, P., Schiex, T.: Penalty logic and its link with dempster-shafer theory. In: Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence, pp. 204–211. Morgan Kaufmann (1994)Google Scholar
  8. 8.
    Scherer, K.R.: What are emotions? and how can they be measured? Social Science Information 44(4), 695–729 (2005)CrossRefGoogle Scholar
  9. 9.
    Sentz, K., Ferson, S.: Combination of evidence in dempster-shafer theory. Tech. rep., Sandia National Laboratories (2002)Google Scholar
  10. 10.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)Google Scholar
  11. 11.
    Vlasenko, B., Böck, R., Wendemuth, A.: Modeling affected user behavior during human-machine interaction. In: Proceedings of the 5th International Conference on Speech Prosody 2010, Chicago, Illinois, USA, pp. 44–47 (2010)Google Scholar
  12. 12.
    Vlasenko, B., Philippou-Hübner, D., Prylipko, D., Böck, R., Siegert, I., Wendemuth, A.: Vowels formants analysis allows straightforward detection of high arousal emotions. In: Proceedings of the IEEE International Conference on Multimedia and Expo, ICME 2011, Barcelona, Spain (2011), elec. resourceGoogle Scholar
  13. 13.
    Walter, S., et al.: Multimodal Emotion Classification in Naturalistic User Behavior. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part III, HCII 2011. LNCS, vol. 6763, pp. 603–611. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Zhang, L.: Representation, independence, and combination of evidence in the dempster-shafer theory. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 51–69. Wiley (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ronald Böck
    • 1
  • Stefan Glüge
    • 1
  • Andreas Wendemuth
    • 1
  1. 1.Cognitive Systems, IESKOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations