Advertisement

Interval Algorithm for Set-Membership Identification of MIMO LTI System

  • Xiaojun Wang
  • Chen Yang
  • Baochang Zhang
  • Lei Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8032)

Abstract

Based on the assumption of Unknown-But–Bounded (UBB) noise, an interval algorithm is presented for set-membership parameter identification of a multiple-input multiple-output (MIMO) linear time-invariant (LTI) system. By virtue of interval mathematics, the objective of this study is to seek the minimal interval estimation (or hyper-rectangle) of parameters to be identified, which is compatible with the measured data and the bounded noise. The present algorithm can obtain not only the center estimations of parameters, but also the bounds of errors on them. Numerical example is used to illustrate its small computation efforts and higher accuracy by comparison with Fogel’s ellipsoidal algorithm and the least squares algorithm.

Keywords

set-membership identification (SMI) linear time-invariant (LTI) system interval algorithm Multi-Input and Multi-Output (MIMO) Unknown-But-Bounded (UBB) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fogel, E.: System identification via membership set constraints with energy constrained noise. IEEE Transactions on Automatic Control AC 24(5), 752–758 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Fogel, E., Huang, Y.F.: On the value of information in system identification-Bounded noise case. Automatica 18(2), 229–238 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Milanese, M., Belforte, G.: Estimation theory and uncertainty intervals evaluation in present of unknown but bounded errors: Linear families of models and estimators. IEEE Transactions on Automatic Control AC 27(2), 408–414 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cerone, V.: Feasible parameter set for linear models with bounded errors in all variables. Automatica 29(6), 1551–1555 (1993)zbMATHCrossRefGoogle Scholar
  5. 5.
    Sun, X.F.: Set membership identification-Algorithm, Convergence, Robustness. (Ph D Thesis). Institute of Automation, Chinese Academy of Sciences Beijing (1994) (in Chinese)Google Scholar
  6. 6.
    Yue, Z.J.: Near-optimal input design for set-membership identification. Journal of PLA University of Science and Technology 2(2), 96–98 (2001) (in Chinese)Google Scholar
  7. 7.
    Garrido, R., Miranda, R.: DC servomechanism parameter identification: A closed loop input error approach. ISA Transactions 51(1), 42–49 (2012)CrossRefGoogle Scholar
  8. 8.
    Li, L., Liu, W.Y., Han, B.: Dynamical level set method for parameter identification of nonlinear parabolic distributed parameter systems. Commun. Nonlinear Sci. Numer. Simulat. 17(7), 2752–2765 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Vardakos, S., Gutierrez, M., Xia, C.C.: Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA). Tunnelling and Underground Space Technology 28, 109–123 (2012)CrossRefGoogle Scholar
  10. 10.
    Qiu, Z.P., Wang, X.J.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures 40(20), 5423–5439 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Wang, X.J., Qiu, Z.P.: Interval Algorithm for Membership-Set Identification of Linear Time-invariant System. Chinese Journal of Theoretical and Applied Mechanics 37(6), 713–718 (2005)Google Scholar
  12. 12.
    Wang, W.Z., Cai, J.S.: Optimal Algorithms of Set Member Identification for Parameters of MIMO Systems. Control Theroy and Applications 14(3), 402–406 (1997)MathSciNetGoogle Scholar
  13. 13.
    Yuan, Z.D., Xu, Q.N.: Set Membership Identification for the Parameters of MIMO System. Control Theory and Applications 11(4), 404–412 (1994)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaojun Wang
    • 1
  • Chen Yang
    • 2
  • Baochang Zhang
    • 3
  • Lei Wang
    • 1
  1. 1.Institute of Solid MechanicsBeihang UniversityBeijingChina
  2. 2.Qian Xuesen Laboratory of Space TechnologyChina Academy of Space TechnologyBeijingChina
  3. 3.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina

Personalised recommendations