Morphisms Determined by Objects in Triangulated Categories

Part of the Abel Symposia book series (ABEL, volume 8)

Abstract

The concept of a morphism determined by an object provides a method to construct or classify morphisms in a fixed category. We show that this works particularly well for triangulated categories having Serre duality. Another application of this concept arises from a reformulation of Freyd’s generating hypothesis.

Notes

Acknowledgements

Some 20 years ago, Maurice Auslander encouraged me (then a postdoc at Brandeis University) to read his Philadelphia notes [1], commenting that they had never really been used. More recently, postdocs at Bielefeld asked me to explain this material; I am grateful to both of them. Special thanks goes to Greg Stevenson for helpful discussions and comments on a preliminary version of this paper, and to Apostolos Beligiannis for sharing interest in this subject.

References

  1. 1.
    M. Auslander, Functors and morphisms determined by objects, Representation theory of algebras (Proc. conf., Temple Univ., Philadelphia, Pa., 1976), 1–244, Lecture Notes in Pure Appl. Math. 37, Dekker, New York, 1978. Google Scholar
  2. 2.
    M. Auslander, Applications of morphisms determined by modules, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), 245–327, Lecture Notes in Pure Appl. Math., 37, Dekker, New York, 1978. Google Scholar
  3. 3.
    M. Auslander, I. Reiten, Stable equivalence of dualizing R-varieties, Adv. Math. 12 (1974), 306–366. MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    M. Auslander, I. Reiten, Representation theory of Artin algebras III. Almost split sequences, Commun. Algebra 3 (1975), 239–294. MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    M. Auslander, I. Reiten, S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, Cambridge, 1995. MATHCrossRefGoogle Scholar
  6. 6.
    A. Beligiannis, Auslander-Reiten triangles, Ziegler spectra and Gorenstein rings, K-Theory 32, no. 1 (2004), 1–82. MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    P. Freyd, Stable homotopy, in Proc. conf. categorical algebra (La Jolla, Calif., 1965), 121–172, Springer, New York, 1966. CrossRefGoogle Scholar
  8. 8.
    O. Iyama, Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172, no. 1 (2008), 117–168. MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    H. Krause, Decomposing thick subcategories of the stable module category, Math. Ann. 313, no. 1 (1999), 95–108. MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    H. Krause, Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math. 139, no. 1 (2000), 99–133. MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    H. Krause, Auslander-Reiten theory via Brown representability, K-Theory 20, no. 4 (2000), 331–344. MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    H. Krause, Report on locally finite triangulated categories, K-Theory 9, no. 3 (2012), 421–458. MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    I. Reiten, M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Am. Math. Soc. 15, no. 2 (2002), 295–366. MATHCrossRefGoogle Scholar
  14. 14.
    C. M. Ringel, Morphisms determined by objects: the case of modules over Artin algebras, Ill. J. Math., to appear. arXiv:1110.6734.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations