Advertisement

First Progresses in Evaluation of Resonance in Staff Selection through Speech Emotion Recognition

  • Vitoantonio Bevilacqua
  • Pietro Guccione
  • Luigi Mascolo
  • Pasquale Pio Pazienza
  • Angelo Antonio Salatino
  • Michele Pantaleo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7996)

Abstract

Speech Emotion Recognition (SER) is a hot research topic in the field of Human Computer Interaction. In this paper a SER system is developed with the aim of providing a classification of the “state of interest” of a human subject involved in a job interview. Classification of emotions is performed by analyzing the speech produced during the interview. The presented methods and results show just preliminary conclusions, as the work is part of a larger project including also analysis, investigation and classification of facial expressions and body gestures during human interaction. At the current state of the work, investigation is carried out by using software tools already available for free on the web; furthermore, the features extracted from the audio tracks are analyzed by studying their sensitivity to an audio compression stage. The Berlin Database of Emotional Speech (EmoDB) is exploited to provide the preliminary results.

Keywords

Emotional Speech Classification Emotion Recognition Acoustic Features Extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bevilacqua, V., et al.: A face recognition system based on Pseudo 2D HMM applied to neural network coefficients. Soft Computing 12(7), 615–621 (2008)CrossRefGoogle Scholar
  2. 2.
    Bevilacqua, V., et al.: 3D nose feature identification and localization through Self-Organizing Map and Graph Matching. Journal of Circuits Systems and Computers, 191–202 (2010)Google Scholar
  3. 3.
    Bevilacqua, V., Pannarale, P., Abbrescia, M., Cava, C., Paradiso, A., Tommasi, S.: Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression. BMC Bioinformatics 13(7), S9 (2012), doi:10.1186/1471 2105-13-S7-S9Google Scholar
  4. 4.
    Bevilacqua, V.: Three-dimensional virtual colonoscopy for automatic polyps detection by artificial neural network approach: New tests on an enlarged cohort of polyps. Neurocomputting, .0925–2312 (2012)Google Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning Information Science and Statistics (2006)Google Scholar
  6. 6.
    Boersma, P.: Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. Proceedings of the Institute of Phonetic Sciences 17, 97–110 (1993)Google Scholar
  7. 7.
    Boersma, P.: Praat: a system for doing phonetics by computer. Glot International 9(10), 341–345 (2001)Google Scholar
  8. 8.
    Bou-Ghazale, S.E., Hansen, J.H.L.: A comparative study of traditional and newly proposed features for recognition of speech under stress. IEEE Transactions on Speech and Audio Processing 8(4), 429–442 (2000)CrossRefGoogle Scholar
  9. 9.
    Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database of german emotional speech. In: Proceedings on Interspeech 2005, pp. 1517–1520 (2005)Google Scholar
  10. 10.
    Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn 20(3) (1995)Google Scholar
  11. 11.
    Dellaert, F., Polzin, T., Waibel, A.: Recognizing Emotion in Speech. Proceedings on Spoken Language 3, 1970–1973 (1996)Google Scholar
  12. 12.
    Eyben, F., Wollmer, M., Schuller, B.: Introducing the Munich open-source emotion and affect recognition toolkit. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (2009)Google Scholar
  13. 13.
    Fant, G.: The Acoustic Theory of Speech Production. Mouton, The Hague (1960)Google Scholar
  14. 14.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11, 1 (2009)CrossRefGoogle Scholar
  15. 15.
    Hastie, T., Tibshirani, R.: Classification by Pairwise Coupling. In: Advances in Neural Information Processing Systems (1998)Google Scholar
  16. 16.
    Golub, T.R.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  17. 17.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 46(1-3) (2002)Google Scholar
  18. 18.
    Jabloun, F.: Teager Energy Based Feature Parameters for Speech Recognition in Car Noise. IEEE Signal Processing Letters 6(10) (1999)Google Scholar
  19. 19.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics. Springer, NY (2002)zbMATHGoogle Scholar
  20. 20.
    McGilloway, S., Cowie, R., Douglas-Cowie, E., Gielen, S., Westerdijk, M., Stroeve, S.: Approaching automatic recognition of emotion from voice: a rough benchmark. In: ISCA Tutorial and Research Workshop (ITRW) on Speech and Emotion (2000)Google Scholar
  21. 21.
    Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  22. 22.
    New, T.L., Foo, S.W., De, S.L.C.: Speech emotion recognition using hidden Markov models. Speech Communication 41(4), 603–623 (2003)CrossRefGoogle Scholar
  23. 23.
    Platt, J.C.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press (1998)Google Scholar
  24. 24.
    Scherer, S., Hofmann, H., Lampmann, M., Pfeil, M., Rhinow, S., Schwenker, F., Palm, G.: Emotion Recognition from Speech: Stress Experiment. In: Proceedings of the Sixth International Language Resources and Evaluation (LREC 2008) European Language Resources Association, ELRA (2008)Google Scholar
  25. 25.
    Scherer, K.R., Banse, R., Wallbott, H.G., Goldbeck, T.: Vocal cues in Emotion Encoding and Decoding. Motivation and Emotion 15, 123–148 (1996)CrossRefGoogle Scholar
  26. 26.
    Scherer, K.R., Johnstone, T., Klasmeyer, G.: Vocal expression of emotion. Oxford University Press, New York (2003)Google Scholar
  27. 27.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press (2008)Google Scholar
  28. 28.
    Ververidis, D., Kotropoulos, C.: Emotional speech recognition: Resources, features, and methods. Speech Communication 48(9), 1162–1181 (2006)CrossRefGoogle Scholar
  29. 29.
    Ververidis, D., Kotropoulos, C., Pitas, I.: Automatic emotional speech classification. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 1, pp. I-593. IEEE (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vitoantonio Bevilacqua
    • 1
  • Pietro Guccione
    • 1
  • Luigi Mascolo
    • 1
  • Pasquale Pio Pazienza
    • 1
  • Angelo Antonio Salatino
    • 1
  • Michele Pantaleo
    • 2
  1. 1.Dip. di Ingegneria Elettrica e dell’InformazionePolitecnico di BariBariItaly
  2. 2.AMT Services s.r.l.BariItaly

Personalised recommendations