Extending High-Dimensional Indexing Techniques Pyramid and iMinMax(θ): Lessons Learned

  • Karthik Ganesan Pillai
  • Liessman Sturlaugson
  • Juan M. Banda
  • Rafal A. Angryk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7968)

Abstract

Pyramid Technique and iMinMax(θ) are two popular high-dimensional indexing approaches that map points in a high-dimensional space to a single-dimensional index. In this work, we perform the first independent experimental evaluation of Pyramid Technique and iMinMax(θ), and discuss in detail promising extensions for testing k-Nearest Neighbor (kNN) and range queries. For datasets with skewed distributions, the parameters of these algorithms must be tuned to maintain balanced partitions. We show that, by using the medians of the distribution we can optimize these parameters. For the Pyramid Technique, different approximate median methods on data space partitioning are experimentally compared using kNN queries. For the iMinMax(θ), the default parameter setting and parameters tuned using the distribution median are experimentally compared using range queries. Also, as proposed in the iMinMax(θ) paper, we investigated the benefit of maintaining a parameter to account for the skewness of each dimension separately instead of a single parameter over all the dimensions.

Keywords

high-dimensional indexing iMinMax Pyramid Technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Battiato, S., Cantone, D., Catalano, D., Cincotti, G., Hofri, M.: An efficient algorithm for the approximate median selection problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 226–238. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered indexes. Acta Informatica 1, 173–189 (1972), doi:10.1007/BF00288683CrossRefGoogle Scholar
  3. 3.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. SIGMOD Rec. 19, 322–331 (1990)CrossRefGoogle Scholar
  4. 4.
    Berchtold, S., Böhm, C., Kriegel, H.-P.: The pyramid-technique: Towards breaking the curse of dimensionality. SIGMOD Rec. 27, 142–153 (1998)CrossRefGoogle Scholar
  5. 5.
    Berchtold, S., Keim, D.A.: High-dimensional index structures database support for next decade’s applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, SIGMOD 1998, p. 501. ACM, New York (1998)CrossRefGoogle Scholar
  6. 6.
    Günnemann, S., Kremer, H., Lenhard, D., Seidl, T.: Subspace clustering for indexing high dimensional data: a main memory index based on local reductions and individual multi-representations. In: Proceedings of the 14th International Conference on Extending Database Technology, EDBT/ICDT 2011, pp. 237–248. ACM, New York (2011)Google Scholar
  7. 7.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14, 47–57 (1984)CrossRefGoogle Scholar
  8. 8.
    Ooi, B.C., Tan, K.-L., Yu, C., Bressan, S.: Indexing the edges – a simple and yet efficient approach to high-dimensional indexing. In: Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2000, pp. 166–174. ACM, New York (2000)CrossRefGoogle Scholar
  9. 9.
    Shi, Q., Nickerson, B.: Decreasing Radius K-Nearest Neighbor Search Using Mapping-based Indexing Schemes. Technical report, University of New Brunswick (2006)Google Scholar
  10. 10.
    Yu, C., Bressan, S., Ooi, B.C., Tan, K.-L.: Querying high-dimensional data in single-dimensional space. The VLDB Journal 13, 105–119 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karthik Ganesan Pillai
    • 1
  • Liessman Sturlaugson
    • 1
  • Juan M. Banda
    • 1
  • Rafal A. Angryk
    • 1
  1. 1.Montana State UniversityBozemanUSA

Personalised recommendations