A Practical Mobile Dry EEG System for Human Computer Interfaces

  • Yu M. Chi
  • Yijun Wang
  • Yu-Te Wang
  • Tzyy-Ping Jung
  • Trevor Kerth
  • Yuchen Cao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)

Abstract

A complete mobile electroencephalogram (EEG) system based on a novel, flexible dry electrode is presented. The wireless device features 32-channels in a soft, adjustable headset. Integrated electronics enable high resolution (24-bit, 250 samples/sec) acquisition electronics and can acquire operate for more than four hours on a single AAA battery. The system weighs only 140 g and is specifically optimized for ease of use. After training users can self-don the headset in around three minutes. Test data on multiple subjects with simultaneously acquired EEGs from a traditional wet, wired system show a very high degree of signal correlation in AEP and P300 tasks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Y.-T., Wang, Y., Jung, T.-P.: A cell-phone-based braincomputer interface for communication in daily life. Journal of Neural Engineering 8(2), 025018 (2011), http://stacks.iop.org/1741-2552/8/i=2/a=025018 Google Scholar
  2. 2.
    Oehler, M., Neumann, P., Becker, M., Curio, G., Schilling, M.: Extraction of ssvep signals of a capacitive eeg helmet for human machine interface. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 4495–4498 (August 2008)Google Scholar
  3. 3.
    Zander, T.O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., Picht, B., Nijboer, F.: A dry eeg-system for scientific research and brain-computer interfaces. Frontiers in Neuroscience (2011)Google Scholar
  4. 4.
    Chi, Y.M., Wang, Y.-T., Wang, Y., Maier, C., Jung, T.-P., Cauwenberghs, G.: Dry and Non-contact EEG Sensors for Mobile Brain-Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 20(2), 228–235 (2012)CrossRefGoogle Scholar
  5. 5.
    Matthews, R., McDonald, N., Hervieux, P., Turner, P., Steindorf, M.: A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, August 22-26, pp. 5276–5281 (2007)Google Scholar
  6. 6.
    Lin, C.-T., Liao, L.-D., Liu, Y.-H., Wang, I.-J., Lin, B.-S., Chang, J.-Y.: Novel dry polymer foam electrodes for long-term eeg measurement. IEEE Transactions on Biomedical Engineering 58(5), 1200–1207 (2011)CrossRefGoogle Scholar
  7. 7.
    Grozea, C., Voinescu, C.D., Fazli, S.: Bristle-sensors–low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. Journal of Neural Engineering 8(2) (2011)Google Scholar
  8. 8.
    Chi, Y., Jung, T.-P., Cauwenberghs, G.: Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Reviews in Biomedical Engineering 3, 106–119 (2010)CrossRefGoogle Scholar
  9. 9.
    Ruffini, G., Dunne, S., Farres, E., Cester, I., Watts, P., Ravi, S., Silva, P., Grau, C., Fuentemilla, L., Marco-Pallares, J., Vandecasteele, B.: Enobio dry electrophysiology electrode; first human trial plus wireless electrode system. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, August 22-26, pp. 6689–6693 (2007)Google Scholar
  10. 10.
    Sullivan, T., Deiss, S., Jung, T.-P., Cauwenberghs, G.: A brain-machine interface using dry-contact, low-noise eeg sensors. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008, May 18-21, pp. 1986–1989 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu M. Chi
    • 1
  • Yijun Wang
    • 2
  • Yu-Te Wang
    • 2
  • Tzyy-Ping Jung
    • 2
  • Trevor Kerth
    • 1
  • Yuchen Cao
    • 1
  1. 1.Cognionics, Inc.San DiegoUSA
  2. 2.University of CaliforniaSan Diego La JollaUSA

Personalised recommendations