A Report on the Scientific Contributions of Jacques Tits

  • Francis BuekenhoutEmail author
Part of the The Abel Prize book series (AP)


Jacques Tits is the founder and main developer of the monumental Theory of Buildings which is primarily a combinatorial geometric structure underlying groups of Lie type. It is so to speak group theory without groups. It is a tool to recognize groups of Lie type in contexts where they are not readily present. Its influence on group theory and on the development of algebra is growing fast. On his way to buildings, Tits created the theory of abstract Coxeter groups. Together with François Bruhat, he classified the affine buildings in rather long and difficult work. Together with Richard Weiss, he finished the theory of Moufang polygons in an elementary and long masterpiece of revolutionary algebra.


Simple Group Algebraic Group Coxeter Group Chevalley Group Finite Simple Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

A lecture by Prof. Broue in connection with the Abel Prize 2008 to John G. Thompson and Jacques Tits (MP4 289 MB)

A lecture by Prof. Lubotzky in connection with the Abel Prize 2008 to John G. Thompson and Jacques Tits (MP4 325 MB)

The Abel Lecture by John G. Thompson, the Abel Laureate 2008 (MP4 357 MB)

The Abel Lecture by Jacques Tits, the Abel Laureate 2008 (MP4 278 MB)


  1. 1.
    Abramenko, P., Brown, K.S.: Buildings, Theory and Applications. Springer, Berlin (2008) zbMATHGoogle Scholar
  2. 2.
    Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of Nonpositive Curvature. Birkhäuser, Basel (1985) CrossRefGoogle Scholar
  3. 3.
    Brown, K.S.: Buildings. Springer, Berlin (2009) zbMATHGoogle Scholar
  4. 4.
    Bourbaki, N.: Groupes et Algèbres de Lie. Hermann, Paris (1968). Chapitres 4, 5, 6 zbMATHGoogle Scholar
  5. 5.
    Buekenhout, F. (ed.): Handbook of Incidence Geometry. North Holland, Amsterdam (1995) zbMATHGoogle Scholar
  6. 6.
    Buekenhout, F., Cohen, A.M.: Diagram Geometry, Classical Groups and Buildings. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (2013) zbMATHGoogle Scholar
  7. 7.
    Feit, W., Higman, G.: The nonexistence of certain generalized polygons. J. Algebra 1, 114–131 (1964) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Freudenthal, H.: Lie groups in the foundations of geometry. Adv. Math. 1, 145–190 (1964) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gorenstein, D., Lyons, R., Solomon, R.: Classification of the Finite Simple Groups. Am. Math. Soc., Providence (1996–2004), six volumes CrossRefGoogle Scholar
  10. 10.
    Gray, J.: Worlds out of Nothing, a Course in the History of Geometry in the 19th Century. Springer, London (2007) zbMATHGoogle Scholar
  11. 11.
    Leemans, D.: Residually weakly primitive and locally two-transitive geometries for sporadic groups. Académie Royale de Belgique, Classe des Sciences (2007) Google Scholar
  12. 12.
    Libois, P.: La synthèse de la géométrie et de l’algèbre. Colloque de Géométrie Algébrique. Tenu à Liège les 19–21 décembre 1949. CBRM, Georges Thone, Liège, Masson & Cie, Paris, pp. 143–153 (1950) Google Scholar
  13. 13.
    Ronan, M.A.: Lectures on Buildings. Academic Press, New York (1989) zbMATHGoogle Scholar
  14. 14.
    Timmesfeld, F.G.: Abstract Root Subgroups and Simple Groups of Lie-Type. Birkhäuser, Basel (2001) CrossRefGoogle Scholar
  15. 15.
    Van Maldeghem, H.: Generalized Polygons. Birkhäuser, Basel (1998) zbMATHGoogle Scholar
  16. 16.
    Weiss, R.M.: The Structure of Spherical Buildings. Princeton University Press, Princeton (2003) Google Scholar
  17. 17.
    Weiss, R.M.: The Structure of Affine Buildings. Princeton University Press, Princeton (2009) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Département de MathématiqueUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations