Advertisement

The Work of John Griggs Thompson: A Survey

  • Richard LyonsEmail author
  • Robert M. Guralnick
Chapter
Part of the The Abel Prize book series (AP)

Abstract

In a burst of activity between the late 1950’s and the early 1980’s, one of the biggest mathematical stories of the twentieth century was told—that of the classification of the finite simple groups. The peerless leader of the analysis of arbitrary finite simple groups was John Griggs Thompson, from the moment he came on the scene. His vision lit the entire enterprise, while his inventions supplied and inspired brand-new mathematical tools. The Thompson chapter surveys his contributions to finite group theory as well as Galois theory and other areas of algebra.

Keywords

Finite Group Conjugacy Class Simple Group Maximal Subgroup Galois Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

A lecture by Prof. Broue in connection with the Abel Prize 2008 to John G. Thompson and Jacques Tits (MP4 289 MB)

A lecture by Prof. Lubotzky in connection with the Abel Prize 2008 to John G. Thompson and Jacques Tits (MP4 325 MB)

The Abel Lecture by John G. Thompson, the Abel Laureate 2008 (MP4 357 MB)

The Abel Lecture by Jacques Tits, the Abel Laureate 2008 (MP4 278 MB)

References

  1. 1.
    Carleson and Thompson receive Wolf prize, Notices Amer. Math. Soc. 39 (1992), no. 4, 321–322. 1153175 (92m:01084) Google Scholar
  2. 2.
    A. A. Albert and John Thompson, Two element generation of the projective unimodular group, Bull. Am. Math. Soc. 64 (1958), 92–93. MR 0096728 (20 #3211) MathSciNetzbMATHGoogle Scholar
  3. 3.
    —, Two-element generation of the projective unimodular group, Ill. J. Math. 3 (1959), 421–439. MR 0106951 (21 #5681) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Richard P. Anstee, Marshall Hall Jr., and John G. Thompson, Planes of order 10 do not have a collineation of order 5, J. Comb. Theory, Ser. A 29 (1980), no. 1, 39–58. MR 577542 (82c:51012) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Michael Aschbacher, On finite groups of component type, Ill. J. Math. 19 (1975), 87–115. MR 0376843 (51 #13018) MathSciNetzbMATHGoogle Scholar
  6. 6.
    —, Thin finite simple groups, J. Algebra 54 (1978), no. 1, 50–152. MR 511458 (82j:20032) MathSciNetzbMATHGoogle Scholar
  7. 7.
    —, Weak closure in finite groups of even characteristic, J. Algebra 70 (1981), no. 2, 561–627. MR 623826 (82j:20034) MathSciNetzbMATHGoogle Scholar
  8. 8.
    —, The uniqueness case for finite groups. I, Ann. of Math. (2) 117 (1983), no. 2, 383–454. MR 690850 (84g:20021a) MathSciNetzbMATHGoogle Scholar
  9. 9.
    —, The uniqueness case for finite groups. II, Ann. of Math. (2) 117 (1983), no. 3, 455–551. MR 701255 (84g:20021b) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups. I, Mathematical Surveys and Monographs, vol. 111, Am. Math. Soc., Providence, 2004, Structure of strongly quasithin K-groups. MR 2097623 (2005m:20038a) zbMATHGoogle Scholar
  11. 11.
    —, The classification of quasithin groups. II, Mathematical Surveys and Monographs, vol. 112, Am. Math. Soc., Providence, 2004, Main theorems: the classification of simple QTKE-groups. MR 2097624 (2005m:20038b) zbMATHGoogle Scholar
  12. 12.
    Helmut Bender and George Glauberman, Local analysis for the odd order theorem, London Mathematical Society Lecture Note Series, vol. 188, Cambridge University Press, Cambridge, 1994, With the assistance of Walter Carlip. MR 1311244 (96h:20036) zbMATHGoogle Scholar
  13. 13.
    J. Boen, O. Rothaus, and J. Thompson, Further results on p-automorphic p-groups, Pac. J. Math. 12 (1962), 817–821. MR 0152576 (27 #2553b) MathSciNetzbMATHGoogle Scholar
  14. 14.
    E. Bombieri, A. Odlyzko, and D. Hunt, Thompson’s problem (σ 2=3), Invent. Math. 58 (1980), no. 1, 77–100, Appendices by A. Odlyzko and D. Hunt. MR MR570875 (81f:20019) MathSciNetGoogle Scholar
  15. 15.
    G. W. Bond, Eulogy: John G. Thompson, Bull. Lond. Math. Soc. 19 (1987), no. 6, 635–636, Dual Latin-English text. MR 915435 (88i:01088) MathSciNetGoogle Scholar
  16. 16.
    R. Brauer, On the work of John Thompson, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 15–16. MR 0414281 (54 #2384) Google Scholar
  17. 17.
    Richard Brauer, Investigations on group characters, Ann. of Math. (2) 42 (1941), 936–958. MR 0005731 (3,196b) MathSciNetzbMATHGoogle Scholar
  18. 18.
    —, On the structure of groups of finite order, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Noordhoff, Groningen, 1957, pp. 209–217. MR 0095203 (20 #1709) Google Scholar
  19. 19.
    N. Burgoyne, Finite groups with Chevalley-type components, Pac. J. Math. 72 (1977), no. 2, 341–350. MR 0457550 (56 #15755) MathSciNetzbMATHGoogle Scholar
  20. 20.
    W. Burnside, Theory of groups of finite order, Dover, New York, 1955, 2d ed. MR 0069818 (16,1086c) zbMATHGoogle Scholar
  21. 21.
    E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20–48. MR 0200355 (34 #251) MathSciNetzbMATHGoogle Scholar
  22. 22.
    Walter Feit, Characters of finite groups, Benjamin, New York, 1967. MR 0219636 (36 #2715) zbMATHGoogle Scholar
  23. 23.
    Walter Feit, Marshall Hall Jr., and John G. Thompson, Finite groups in which the centralizer of any non-identity element is nilpotent, Math. Z. 74 (1960), 1–17. MR 0114856 (22 #5674) MathSciNetzbMATHGoogle Scholar
  24. 24.
    Walter Feit and John G. Thompson, Groups which have a faithful representation of degree less than (p−1/2), Pac. J. Math. 11 (1961), 1257–1262. MR 0133373 (24 #A3207) MathSciNetzbMATHGoogle Scholar
  25. 25.
    —, Finite groups which contain a self-centralizing subgroup of order 3, Nagoya Math. J. 21 (1962), 185–197. MR 0142623 (26 #192) MathSciNetzbMATHGoogle Scholar
  26. 26.
    —, A solvability criterion for finite groups and some consequences, Proc. Natl. Acad. Sci. USA 48 (1962), 968–970. MR 0143802 (26 #1352) MathSciNetzbMATHGoogle Scholar
  27. 27.
    —, Solvability of groups of odd order, Pac. J. Math. 13 (1963), 775–1029. MR 0166261 (29 #3538) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Daniel Frohardt and Kay Magaard, Composition factors of monodromy groups, Ann. Math. 154 (2001), 327–345. MR 1865973 MathSciNetzbMATHGoogle Scholar
  29. 29.
    G. Glauberman and J. G. Thompson, Weakly closed direct factors of Sylow subgroups, Pac. J. Math. 26 (1968), 73–83. MR 0235025 (38 #3337) MathSciNetzbMATHGoogle Scholar
  30. 30.
    George Glauberman, A characteristic subgroup of a p-stable group, Can. J. Math. 20 (1968), 1101–1135. MR 0230807 (37 #6365) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Daniel Gorenstein, On finite simple groups of characteristic 2 type, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 5–13. MR 0260864 (41 #5484) Google Scholar
  32. 32.
    —, On the centralizers of involutions in finite groups, J. Algebra 11 (1969), 243–277. MR 0240188 (39 #1540) MathSciNetGoogle Scholar
  33. 33.
    Daniel Gorenstein and Koichiro Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Am. Math. Soc., Providence, 1974, Memoirs of the American Mathematical Society, vol. 147. MR 0367048 (51 #3290) zbMATHGoogle Scholar
  34. 34.
    Daniel Gorenstein and John H. Walter, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284–319. MR 0292927 (45 #2008) MathSciNetzbMATHGoogle Scholar
  35. 35.
    Otto Grün, Beiträge zur Gruppentheorie I, J. Reine Angew. Math. 174 (1935), 1–14. zbMATHGoogle Scholar
  36. 36.
    Robert Guralnick and Kay Magaard, On the minimal degree of a primitive permutation group, J. Algebra 207 (1998), 127–145. MR 164307 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Robert Guralnick and John Shareshian, Symmetric and alternating groups as monodromy groups of Riemann surfaces. I. Generic covers and covers with many branch points, Amer. Math. Soc., Providence, 2007, Memoirs of the American Mathematical Society, vol. 886. MR 2343794 zbMATHGoogle Scholar
  38. 38.
    Robert M. Guralnick and John G. Thompson, Finite groups of genus zero, J. Algebra 131 (1990), no. 1, 303–341. MR 1055011 (91e:20006) MathSciNetzbMATHGoogle Scholar
  39. 39.
    P. Hall and Graham Higman, On the p-length of p-soluble groups and reduction theorems for Burnside’s problem, Proc. London Math. Soc. (3) 6 (1956), 1–42. MR 0072872 (17,344b) MathSciNetzbMATHGoogle Scholar
  40. 40.
    C. Y. Ho, Quadratic pairs for odd primes, Bull. Am. Math. Soc. 82 (1976), no. 6, 941–943. MR 0417273 (54 #5330) MathSciNetzbMATHGoogle Scholar
  41. 41.
    D. R. Hughes and J. G. Thompson, The H-problem and the structure of H-groups, Pac. J. Math. 9 (1959), 1097–1101. MR 0108532 (21 #7248) MathSciNetzbMATHGoogle Scholar
  42. 42.
    Z. Janko, A new finite simple group with Abelian Sylow 2-subgroups and its characterization, J. Algebra 3 (1966), 147–186. MR 0193138 (33 #1359) MathSciNetzbMATHGoogle Scholar
  43. 43.
    Zvonimir Janko and John G. Thompson, On a class of finite simple groups of Ree, J. Algebra 4 (1966), 274–292. MR 0201504 (34 #1386) MathSciNetzbMATHGoogle Scholar
  44. 44.
    —, On finite simple groups whose Sylow 2-subgroups have no normal elementary subgroups of order 8, Math. Z. 113 (1970), 385–397. MR 0283076 (44 #309) MathSciNetzbMATHGoogle Scholar
  45. 45.
    Nicholas M. Katz, Rigid local systems, Princeton University Press, Princeton, 1996, Annals of Mathematical Studies, vol. 139. MR 1366651 zbMATHGoogle Scholar
  46. 46.
    Peter B. Kleidman, A proof of the Kegel-Wielandt conjecture on subnormal subgroups, Ann. of Math. 133 (1991), 369–428. MR 1097243 MathSciNetzbMATHGoogle Scholar
  47. 47.
    F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, Good self dual codes exist, Discrete Math. 3 (1972), 153–162. MR 0307799 (46 #6919) MathSciNetzbMATHGoogle Scholar
  48. 48.
    —, On the existence of a projective plane of order 10, J. Comb. Theory, Ser. A 14 (1973), 66–78. MR 0313089 (47 #1644) MathSciNetzbMATHGoogle Scholar
  49. 49.
    Kay Magaard and Helmut Völklein, The monodromy group of a function on a general curve, Israel J. 141 (2004), 355–368. MR 2063042 MathSciNetzbMATHGoogle Scholar
  50. 50.
    Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer, Berlin, 1999, Springer Monographs in Mathematics. MR 1711577 zbMATHGoogle Scholar
  51. 51.
    Susan Montgomery and A. Jedwab, Modular representations and indicators for bismash products, preprint. Google Scholar
  52. 52.
    Alexander Moretó, An answer to a question of J. G. Thompson on: “Some generalized characters” [J. Algebra 179 (1996), no. 3, 889–893], J. Algebra 275 (2004), no. 1, 75–76. MR 2047441 (2005a:20014) MathSciNetzbMATHGoogle Scholar
  53. 53.
    Gabriel Navarro, John G. Thompson and finite groups, Gac. R. Soc. Mat. Esp. 9 (2006), no. 1, 183–189. MR 2236305 MathSciNetzbMATHGoogle Scholar
  54. 54.
    Donald Passman, Permutation groups, Benjamin, New York, 1968. MR 0237627 (38 #5908) zbMATHGoogle Scholar
  55. 55.
    Thomas Peterfalvi, Simplification du chapitre VI de l’article de Feit et Thompson sur les groupes d’ordre impair, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 12, 531–534. MR 770439 (86d:20020) MathSciNetzbMATHGoogle Scholar
  56. 56.
    —, Character theory for the odd order theorem, London Mathematical Society Lecture Note Series, vol. 272, Cambridge University Press, Cambridge, 2000, Translated from the 1986 French original by Robert Sandling and revised by the author. MR 1747393 (2001a:20016) zbMATHGoogle Scholar
  57. 57.
    Vera Pless and John G. Thompson, 17 Does not divide the order of the group of a (72, 36, 16) doubly even code, IEEE Trans. Inf. Theory 28 (1982), no. 3, 537–541. MR 672889 (83j:94022) MathSciNetzbMATHGoogle Scholar
  58. 58.
    Martin Raussen and Christian Skau, Mathematics develops with a natural speed, and that is quickly, Nieuw Arch. Wiskd. (5) 9 (2008), no. 4, 248–254, Interview with John G. Thompson and Jacques Tits. MR 2561950 MathSciNetzbMATHGoogle Scholar
  59. 59.
    —, Interview with John G. Thompson and Jacques Tits, Not. Am. Math. Soc. 56 (2009), no. 4, 471–478. MR 2493482 MathSciNetzbMATHGoogle Scholar
  60. 60.
    Geoffrey R. Robinson and John G. Thompson, Sums of squares and the fields \(\mathbf{Q}_{A_{n}}\), J. Algebra 174 (1995), no. 1, 225–228. MR 1332869 (96b:12004) MathSciNetGoogle Scholar
  61. 61.
    —, On Brauer’s k(B)-problem, J. Algebra 184 (1996), no. 3, 1143–1160. MR 1407890 (97m:20014) MathSciNetzbMATHGoogle Scholar
  62. 62.
    J. E. Roseblade, Obituary: Philip Hall, Bull. Lond. Math. Soc. 16 (1984), no. 6, 603–626, With contributions by J. G. Thompson and J. A. Green. MR 758133 (86c:01056) MathSciNetzbMATHGoogle Scholar
  63. 63.
    Oscar Rothaus and John G. Thompson, A combinatorial problem in the symmetric group, Pac. J. Math. 18 (1966), 175–178. MR 0195934 (33 #4130) MathSciNetzbMATHGoogle Scholar
  64. 64.
    Leonard Scott, Ronald Solomon, John Thompson, John Walter, and Efim Zelmanov, Walter Feit (1930–2004), Not. Am. Math. Soc. 52 (2005), no. 7, 728–735. MR 2159686 MathSciNetzbMATHGoogle Scholar
  65. 65.
    Peter Sin and John G. Thompson, The divisor matrix, Dirichlet series, and \(\mathrm {SL}(2,\mathbf{Z})\), The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer, New York, 2010, pp. 299–327. MR 2744269 zbMATHGoogle Scholar
  66. 66.
    N. J. A. Sloane and J. G. Thompson, The nonexistence of a certain Steiner system S(3,12,112), J. Comb. Theory, Ser. A 30 (1981), no. 3, 209–236. MR 618528 (82m:05023) MathSciNetzbMATHGoogle Scholar
  67. 67.
    Gernot Stroth and B. Heinrich Matzat, John Griggs Thompson und die Theorie der endlichen Gruppen, Mitt. Dtsch. Math.-Ver. 16 (2008), no. 3, 173–175. MR 2522905 MathSciNetzbMATHGoogle Scholar
  68. 68.
    Michio Suzuki, The nonexistence of a certain type of simple groups of odd order, Proc. Am. Math. Soc. 8 (1957), 686–695. MR 0086818 (19,248f) MathSciNetGoogle Scholar
  69. 69.
    J. G. Thompson, Quadratic pairs, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 375–376. MR 0430043 (55 #3051) Google Scholar
  70. 70.
    —, Simple 3′-groups, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, London, 1974, pp. 517–530. MR 0360802 (50 #13249) Google Scholar
  71. 71.
    —, A conjugacy theorem for E 8, J. Algebra 38 (1976), no. 2, 525–530. MR 0399193 (53 #3044) MathSciNetzbMATHGoogle Scholar
  72. 72.
    —, Finite groups and even lattices, J. Algebra 38 (1976), no. 2, 523–524. MR 0399257 (53 #3108) MathSciNetzbMATHGoogle Scholar
  73. 73.
    —, Remarks on finite groups, Proceedings of the 5th School of Algebra (Rio de Janeiro, 1978) (Rio de Janeiro), Soc. Brasil. Mat., 1978, pp. 75–77. MR 572056 (81j:20006) Google Scholar
  74. 74.
    —, Finite groups and modular functions, Bull. Lond. Math. Soc. 11 (1979), no. 3, 347–351. MR 554401 (81j:20029) MathSciNetzbMATHGoogle Scholar
  75. 75.
    —, Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. Lond. Math. Soc. 11 (1979), no. 3, 352–353. MR 554402 (81j:20030) MathSciNetzbMATHGoogle Scholar
  76. 76.
    —, Uniqueness of the Fischer-Griess monster, Bull. Lond. Math. Soc. 11 (1979), no. 3, 340–346. MR 554400 (81e:20024) MathSciNetzbMATHGoogle Scholar
  77. 77.
    —, A finiteness theorem for subgroups of \(\mathrm {PSL}(2,\mathbf{R})\) which are commensurable with \(\mathrm {PSL}(2,\mathbf{Z})\), The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, CA, 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, 1980, pp. 533–555. MR 604632 (82b:20067) Google Scholar
  78. 78.
    —, Finite-dimensional representations of free products with an amalgamated subgroup, J. Algebra 69 (1981), no. 1, 146–149. MR 613864 (82e:20007) MathSciNetzbMATHGoogle Scholar
  79. 79.
    —, Invariants of finite groups, J. Algebra 69 (1981), no. 1, 143–145. MR 613863 (82d:20042) MathSciNetzbMATHGoogle Scholar
  80. 80.
    —, Rational functions associated to presentations of finite groups, J. Algebra 71 (1981), no. 2, 481–489. MR 630609 (83a:20048) MathSciNetzbMATHGoogle Scholar
  81. 81.
    —, Primitive roots and rigidity, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge, Cambridge Univ. Press, 1985, pp. 327–350. MR 817267 (87g:12001) Google Scholar
  82. 82.
    —, Rational rigidity of G 2(5), Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge, Cambridge Univ. Press, 1985, pp. 321–322. MR 817265 (87e:12006a) Google Scholar
  83. 83.
    —, PSL3 and Galois groups over Q, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge, Cambridge Univ. Press, 1985, pp. 309–319. MR 817264 (87e:12005) Google Scholar
  84. 84.
    —, Algebraic numbers associated to certain punctured spheres, J. Algebra 104 (1986), no. 1, 61–73. MR 865887 (88e:11103) MathSciNetzbMATHGoogle Scholar
  85. 85.
    —, Fricke, free groups and SL2, Group theory (Singapore, 1987), Gruyter, Berlin, 1989, pp. 207–214. MR 981843 (90f:20074) Google Scholar
  86. 86.
    —, Hecke operators and noncongruence subgroups, Group theory (Singapore, 1987), Gruyter, Berlin, 1989, Including a letter from J.-P. Serre, pp. 215–224. MR 981844 (90a:20105) Google Scholar
  87. 87.
    —, Unipotent elements, standard involutions, and the divisor matrix, Commun. Algebra 36 (2008), no. 9, 3363–3371. MR 2441119 (2009j:15016) MathSciNetzbMATHGoogle Scholar
  88. 88.
    J. G. Thompson and H. Völklein, Symplectic groups as Galois groups, J. Group Theory 1 (1998), no. 1, 1–58. MR 1490157 (99c:12007) MathSciNetzbMATHGoogle Scholar
  89. 89.
    John Thompson, A method for finding primes, Am. Math. Mon. 60 (1953), 175. MR 0052448 (14,621b) MathSciNetGoogle Scholar
  90. 90.
    —, Finite groups with fixed-point-free automorphisms of prime order, Proc. Natl. Acad. Sci. USA 45 (1959), 578–581. MR 0104731 (21 #3484) MathSciNetzbMATHGoogle Scholar
  91. 91.
    —, Finite groups with normal p-complements, Proc. Sympos. Pure Math., Vol. 1, Am. Math. Soc., Providence, 1959, pp. 1–3. MR 0117290 (22 #8071) Google Scholar
  92. 92.
    John Thompson and Helmut Völklein, Braid-Abelian tuples in Spn(K), Aspects of Galois theory (Gainesville, FL, 1996), London Math. Soc. Lecture Note Ser., vol. 256, Cambridge Univ. Press, Cambridge, 1999, pp. 218–238. MR 1708608 (2000f:12004) Google Scholar
  93. 93.
    John G. Thompson, Thesis, University of Chicago (1959) Google Scholar
  94. 94.
    —, Normal p-complements for finite groups, Math. Z. 72 (1959/1960), 332–354. MR 0117289 (22 #8070) MathSciNetzbMATHGoogle Scholar
  95. 95.
    —, A special class of non-solvable groups, Math. Z. 72 (1959/1960), 458–462. MR 0117288 (22 #8069) MathSciNetzbMATHGoogle Scholar
  96. 96.
    —, Two results about finite groups, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 296–300. MR 0175972 (31 #248) Google Scholar
  97. 97.
    —, 2-signalizers of finite groups, Pac. J. Math. 14 (1964), 363–364. MR 0159874 (28 #3090) MathSciNetzbMATHGoogle Scholar
  98. 98.
    —, Automorphisms of solvable groups, J. Algebra 1 (1964), 259–267. MR 0173710 (30 #3920) MathSciNetzbMATHGoogle Scholar
  99. 99.
    —, Fixed points of p-groups acting on p-groups, Math. Z. 86 (1964), 12–13. MR 0168653 (29 #5911) MathSciNetzbMATHGoogle Scholar
  100. 100.
    —, Normal p-complements for finite groups, J. Algebra 1 (1964), 43–46. MR 0167521 (29 #4793) MathSciNetzbMATHGoogle Scholar
  101. 101.
    —, Factorizations of p-solvable groups, Pac. J. Math. 16 (1966), 371–372. MR 0188296 (32 #5735) MathSciNetzbMATHGoogle Scholar
  102. 102.
    —, Hall subgroups of the symmetric groups, J. Comb. Theory 1 (1966), 271–279. MR 0197546 (33 #5711) MathSciNetzbMATHGoogle Scholar
  103. 103.
    —, Centralizers of elements in p-groups, Math. Z. 96 (1967), 292–293. MR 0209357 (35 #255) MathSciNetzbMATHGoogle Scholar
  104. 104.
    —, Defect groups are Sylow intersections, Math. Z. 100 (1967), 146. MR 0213432 (35 #4296) MathSciNetzbMATHGoogle Scholar
  105. 105.
    —, An example of core-free quasinormal subgroups of p-groups, Math. Z. 96 (1967), 226–227. MR 0207844 (34 #7658) MathSciNetzbMATHGoogle Scholar
  106. 106.
    —, On a question of L. J. Paige, Math. Z. 99 (1967), 26–27. MR 0212093 (35 #2968) MathSciNetGoogle Scholar
  107. 107.
    —, Toward a characterization of \(E_{2}^{\ast} (q)\), J. Algebra 7 (1967), 406–414. MR 0223448 (36 #6496) MathSciNetGoogle Scholar
  108. 108.
    —, Vertices and sources, J. Algebra 6 (1967), 1–6. MR 0207863 (34 #7677) MathSciNetGoogle Scholar
  109. 109.
    —, Characterization of finite simple groups, Proc. Internat. Congr. Math. (Moscow, 1966), Mir, Moscow, 1968, pp. 158–162. MR 0236258 (38 #4555) Google Scholar
  110. 110.
    —, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Am. Math. Soc. 74 (1968), 383–437. MR 0230809 (37 #6367) MathSciNetzbMATHGoogle Scholar
  111. 111.
    —, Envelopes and p-signalizers of finite groups, Ill. J. Math. 13 (1969), 87–90. MR 0237633 (38 #5914) MathSciNetzbMATHGoogle Scholar
  112. 112.
    —, A replacement theorem for p-groups and a conjecture, J. Algebra 13 (1969), 149–151. MR 0245683 (39 #6989) MathSciNetGoogle Scholar
  113. 113.
    —, Bounds for orders of maximal subgroups, J. Algebra 14 (1970), 135–138. MR 0252500 (40 #5720) MathSciNetzbMATHGoogle Scholar
  114. 114.
    —, A non-duality theorem for finite groups, J. Algebra 14 (1970), 1–4. MR 0251125 (40 #4356) MathSciNetGoogle Scholar
  115. 115.
    —, Nonsolvable finite groups all of whose local subgroups are solvable. II, Pac. J. Math. 33 (1970), 451–536. MR 0276325 (43 #2072) MathSciNetzbMATHGoogle Scholar
  116. 116.
    —, Normal p-complements and irreducible characters, J. Algebra 14 (1970), 129–134. MR 0252499 (40 #5719) MathSciNetzbMATHGoogle Scholar
  117. 117.
    —, Nonsolvable finite groups all of whose local subgroups are solvable. III, Pac. J. Math. 39 (1971), 483–534. MR 0313378 (47 #1933) MathSciNetzbMATHGoogle Scholar
  118. 118.
    —, Toward a characterization of \(E_{2}^{\ast} (q)\) . II, J. Algebra 20 (1972), 610–621. MR 0313377 (47 #1932) MathSciNetzbMATHGoogle Scholar
  119. 119.
    —, Isomorphisms induced by automorphisms, J. Aust. Math. Soc. 16 (1973), 16–17, Collection of articles dedicated to the memory of Hanna Neumann, I. MR 0330293 (48 #8630) MathSciNetzbMATHGoogle Scholar
  120. 120.
    —, Nonsolvable finite groups all of whose local subgroups are solvable. IV, V, VI, Pac. J. Math. 48 (1973), 511–592, ibid. 50 (1974), 215–297; ibid. 51(1974), 573–630. MR 0369512 (51 #5745) MathSciNetGoogle Scholar
  121. 121.
    —, Weighted averages associated to some codes, Scr. Math. 29 (1973), no. 3–4, 449–452, Collection of articles dedicated to the memory of Abraham Adrian Albert. MR 0403994 (53 #7803) MathSciNetzbMATHGoogle Scholar
  122. 122.
    —, A simple subgroup of E 8(3), Finite Groups (Sapporo and Kyoto, 1974) (Nagayoshi Iwahori, ed.), Japan Society for the Promotion of Science, Tokyo, 1976, pp. 113–116 Google Scholar
  123. 123.
    —, Toward a characterization of \(F^{*}_{2}(q)\) . III, J. Algebra 49 (1977), no. 1, 162–166. MR 0453858 (56 #12111) MathSciNetGoogle Scholar
  124. 124.
    —, Finite nonsolvable groups, Group theory, Academic Press, London, 1984, pp. 1–12. MR 780566 (86h:20017) Google Scholar
  125. 125.
    —, Some finite groups which appear as Gal L/K, where \(K\subseteq\mathbf{Q}(\mu_{n})\), J. Algebra 89 (1984), no. 2, 437–499. MR 751155 (87f:12012) MathSciNetGoogle Scholar
  126. 126.
    —, Some finite groups which appear as Gal L/K, where \(K\subseteq\mathbf{Q}(\mu_{n})\), Group theory, Beijing 1984, Lecture Notes in Math., vol. 1185, Springer, Berlin, 1986, pp. 210–230. MR 842445 (87i:11160) Google Scholar
  127. 127.
    —, Archimedes and continued fractions, Math. Medley 15 (1987), no. 2, 67–75. MR 931712 (89d:01008) MathSciNetGoogle Scholar
  128. 128.
    —, Groups of genus zero and certain rational functions, Groups—Canberra 1989, Lecture Notes in Math., vol. 1456, Springer, Berlin, 1990, pp. 185–190. MR 1092232 (92h:12005) Google Scholar
  129. 129.
    —, Rigidity, GL(n,q), and the braid group, Bull. Soc. Math. Belg. Sér. A 42 (1990), no. 3, 723–733, Algebra, groups and geometry. MR 1316220 (96d:20018) MathSciNetzbMATHGoogle Scholar
  130. 130.
    —, Galois groups, Groups—St. Andrews 1989, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 160, Cambridge Univ. Press, Cambridge, 1991, pp. 455–462. MR 1123999 (93a:12007) Google Scholar
  131. 131.
    —, Algebraic integers all of whose algebraic conjugates have the same absolute value, Coding theory, design theory, group theory (Burlington, VT, 1990), Wiley-Intersci., New York, 1993, pp. 107–110. MR 1227123 (94d:11082) Google Scholar
  132. 132.
    —, Note on H(4), Commun. Algebra 22 (1994), no. 14, 5683–5687. MR 1298742 (95h:20048) zbMATHGoogle Scholar
  133. 133.
    —, Note on realizable sequences of partitions, Commun. Algebra 22 (1994), no. 14, 5679–5682. MR 1298741 (96d:05008) MathSciNetzbMATHGoogle Scholar
  134. 134.
    —, 4-punctured spheres, J. Algebra 171 (1995), no. 2, 587–605. MR 1315914 (96f:20072) MathSciNetzbMATHGoogle Scholar
  135. 135.
    —, Sylow 2-subgroups of simple groups, Séminaire Bourbaki, Vol. 10, Soc. Math. France, Paris, 1995, pp. Exp. No. 345, 543–545. MR 1610481 Google Scholar
  136. 136.
    —, Some generalized characters, J. Algebra 179 (1996), no. 3, 889–893. MR 1371748 (96k:20014) MathSciNetzbMATHGoogle Scholar
  137. 137.
    —, Incidence matrices of finite projective planes and their eigenvalues, J. Algebra 191 (1997), no. 1, 265–278. MR 1444501 (98e:51008) MathSciNetzbMATHGoogle Scholar
  138. 138.
    —, Power maps and completions of free groups and of the modular group, J. Algebra 191 (1997), no. 1, 252–264. MR 1444500 (98a:20026) MathSciNetGoogle Scholar
  139. 139.
    —, Composition factors of rational finite groups, J. Algebra 319 (2008), no. 2, 558–594. MR 2381796 (2008k:20015) MathSciNetzbMATHGoogle Scholar
  140. 140.
    Helmut Voelklein and Tanush Shaska (eds.), Progress in Galois theory, Developments in Mathematics, vol. 12, New York, Springer, 2005. MR 2150438 (2006a:00014) zbMATHGoogle Scholar
  141. 141.
    Helmut Völklein, Groups as Galois groups, an introduction, Cambridge University Press, Cambridge, 1996, Cambridge Studies in Advanced Mathematics, vol. 53. MR 1405612 zbMATHGoogle Scholar
  142. 142.
    Helmut Völklein, David Harbater, Peter Müller, and J. G. Thompson (eds.), Aspects of Galois theory, London Mathematical Society Lecture Note Series, vol. 256, Cambridge University Press, Cambridge, 1999, Papers from the Conference on Galois Theory held at the University of Florida, Gainesville, FL, October 14–18, 1996. MR 1708599 (2000c:14004) Google Scholar
  143. 143.
    P. Sin and J. G. Thompson, The divisor matrix, Dirichlet series, and SL(2;Z), in The legacy of Alladi Ramakrishnan in the mathematical sciences, pp. 299–327, New York: Springer, 2010 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsRutgers UniversityPiscatawayUSA
  2. 2.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations