Advertisement

Abel and the Theory of Algebraic Equations

(Reflections Stimulated by the Letter Abel Sent to Crelle on September 25, 1828)
  • Christian SkauEmail author
Chapter
Part of the The Abel Prize book series (AP)

Abstract

A letter from Abel to Crelle dated 25 September 1828—uncovered by Mittag-Leffler more than seventy years later—is a poignant document which throws considerable light upon the last three months that Abel had left for doing mathematics before tuberculosis incapacitated him, sapping all his strength, and eventually killing him. The letter raises the intriguing question of how the theory of equations (later known as Galois Theory) would have evolved if Abel had been able to write up his discoveries in this area. With the Abel letter as resonant backdrop we reflect upon this, basing our reflections on Abel’s published as well as posthumous manuscripts. Of vital importance is his discoveries in the theory of elliptic functions. The latter provided him with an abudance of algebraic equations.

Keywords

Elliptic Function Galois Group Galois Theory Primitive Element Splitting Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abel, N.H.: Oeuvres Complètes (1839). Publiée par B.M Holmboe, Christiania Google Scholar
  2. 2.
    Abel, N.H.: Oeuvres Complètes. Nouvelle Édition, Tome 1 (1881). Publiée par L. Sylow et S. Lie, Christiania Google Scholar
  3. 3.
    Abel, N.H.: Oeuvres Complètes. Nouvelle Édition, Tome 2 (1881). Publiée par L. Sylow et S. Lie, Christiania Google Scholar
  4. 4.
    Edwards, H.M.: Roots of solvable polynomials of prime degree, preprint (2012), 12 p. (To appear in Exp. Math.) doi: 10.1016/j.exmath.2013.09.005 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fricke, R.: Elliptische Funktionen. In: Enzyklopädie der Mathematischen Wissenschaften, IIB3. Analysis, pp. 177–348. Teubner, Leipzig (1901–1921) Google Scholar
  6. 6.
    Galois, É.: Sur les conditions de résolubilité des équations par radicaux, Oeuvres Mathématiques d’Évariste Galois (Préface par J. Liouville). J. Math. Pures Appl. 11, 381–444 (1846) (Éditions Jacques Gabay (1989)) Google Scholar
  7. 7.
    Gauss, C.F.: Disquisitiones Arithmeticae. Yale Univ. Press, Leipzig (1801), (English translation: Disquisitiones Arithmeticae (A.A. Clarke, translator) (1966)) zbMATHGoogle Scholar
  8. 8.
    Gårding, L., Skau, C.: Niels Henrik Abel and solvable equations. Arch. Hist. Exact Sci. 48, 81–103 (1994) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hölder, O.: Galois’che Theorie mit Anwendungen. In: Enzyklopädie der Mathematischen Wissenschaften, IB 3c,d. Arithmetik und Algebra, pp. 480–520. Teubner, Leipzig (1898–1904) Google Scholar
  10. 10.
    Jordan, C.: Traité des substitutions et des équations algébriques. Gauthier-Villars, Paris (1870) zbMATHGoogle Scholar
  11. 11.
    Kronecker, L.: Über die algebraisch auflösbaren Gleichungen, I. Abhandlung, Monatsberichte Kgl. Preuss. Akad. Wiss. Berlin IV, 365–374 (1853), refers to Vol. 4 of Kronecker’s Collected Works, 3–11 Google Scholar
  12. 12.
    Kronecker, L.: Über die algebraisch auflösbaren Gleichungen, II. Abhandlung, Monatsberichte Kgl. Preuss. Akad. Wiss. Berlin IV, 203–215 (1856), refers to Vol. 4 of Kronecker’s Collected Works, 27–37 Google Scholar
  13. 13.
    Oeuvres de Lagrange, publiées par J.-A. Serret, Gauthier-Villars, Paris (1869) Google Scholar
  14. 14.
    Laudal, O.A., Piene, R. (eds.): The Legacy of Niels Henrik Abel, the Abel Bicentennial, Oslo, 2002. Springer, Berlin (2004) zbMATHGoogle Scholar
  15. 15.
    Neumann, P.M.: The mathematical writings of Évariste Galois. Heritage of European Mathematics. European Math. Soc., Zürich (2011) CrossRefGoogle Scholar
  16. 16.
    Ore, Ø.: Niels Henrik Abel. Mathematician Extraordinary. Chelsea, New York (1957) zbMATHGoogle Scholar
  17. 17.
    Runge, C.: Über die auflösbaren Gleichungen von der Form x 5+ux+v=0. Acta Math. 7, 173–186 (1885) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sylow, L.: Abels studier og hans oppdagelser. Festskrift ved hundreaarsjubileet for Niels Henrik Abels fødsel (1902), 56 p. Kristiania (French translation: Les études d’Abel et ses découvertes) Google Scholar
  19. 19.
    Sylow, L.: Om Abels arbeider og planer i hans sidste tid belyst ved dokumenter, som er fremkomne efter den anden udgave av hans verker, 3rd edn. Scandinavian Mathematical Congress. Kristiania (1913). English translation in “I sporet etter Abel” (“Tracing Abel”), Scatec, 118–127 (2009) Google Scholar
  20. 20.
    Schappacher, N.: On the history of Hilbert’s twelfth problem. A comedy of errors. In: Matériaux pour l’histoire des mathématiques au XXe siècle, Actes du colloque á la mémoire de Jean Dieudonné, Nice, 1996. Séminaires et Congrès, Société Mathématique de France, vol. 3, pp. 243–273 (1998) Google Scholar
  21. 21.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, New York (1986) zbMATHGoogle Scholar
  22. 22.
    Silverman, J.H., Tate, J.: Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics. Springer, New York (1992) CrossRefGoogle Scholar
  23. 23.
    Stubhaug, A.: Et foranskutt lyn. Niels Henrik Abel og hans tid. Aschehoug, Oslo (1996) (English translation: Called Too Soon by Flames Afar. Niels Henrik Abel and his Times, Springer, Berlin (2000)) Google Scholar
  24. 24.
    Taton, R.: Évariste Galois and his contemporaries. Bull. Lond. Math. Soc. 15, 107–118 (1983) CrossRefGoogle Scholar
  25. 25.
    van der Waerden, B.L.: Die Galois-Theorie von Heinrich Weber bis Emil Artin. Arch. Hist. Exact Sci. 9, 240–248 (1972) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Weber, H.: Lehrbuch der Algebra. Vieweg und Sohn, Braunschweig (1895) (Reprint of 2nd edition, AMS Chelsea Publishing, New York) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNTNUTrondheimNorway

Personalised recommendations