Advertisement

John Milnor’s Work in Dynamics

  • Mikhail LyubichEmail author
Chapter
Part of the The Abel Prize book series (AP)

Abstract

This survey overviews selected themes in real and complex dynamics that have been strongly influenced by Milnor’s work over the past 40 years.

Keywords

Rotation Number Geodesic Lamination Smooth Dynamical System Quadratic Family Holomorphic Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

I thank Araceli Bonifant and John Milnor for helpful comments and for assistance with pictures.

Supplementary material

A lecture by Prof. Ghys in connection with the Abel Prize 2011 to John Milnor (MP4 399 MB)

A lecture by Prof. Hopkins in connection with the Abel Prize 2011 to John Milnor (MP4 306 MB)

A lecture by Prof. McMullen in connection with the Abel Prize 2011 to John Milnor (MP4 362 MB)

The Abel Lecture by John Milnor, the Abel Laureate 2011 (MP4 379 MB)

References

  1. 1.
    Alexander, J.C., Kan, I., Yorke, J., You, Z.: Int. J. Bifurc. Chaos 2, 795–813 (1992) CrossRefGoogle Scholar
  2. 2.
    Avila, A., Lyubich, M.: Feigenbaum Julia Sets of Positive Area (2011). Manuscript zbMATHGoogle Scholar
  3. 3.
    Avila, A., Lyubich, M., de Melo, W.: Regular or stochastic dynamics in real analytic families of unimodal maps. Invent. Math. 154, 451–550 (2003) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bielifield, B., Fisher, Y., Hubbard, J.: The classification of critically preperiodic polynomials as dynamical systems. J. Am. Math. Soc. 5, 721–762 (1992) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blokh, A., Lyubich, M.: Measurable dynamics of S-unimodal maps of the interval. Ann. Sci. Éc. Norm. Super. 24, 545–573 (1991) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bonifant, A., Buff, X., Milnor, J.: On antipode preserving cubic maps, in preparation Google Scholar
  7. 7.
    Bonifant, A., Dabija, M., Milnor, J.: Elliptic curves as attractors in \(\mathbb{P}^{2}\). I Dynamics. Exp. Math. 16, 385–420 (2007) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonifant, A., Kiwi, J., Milnor, J.: Cubic polynomial maps with periodic critical orbit. II. Escape regions. Conform. Geom. Dyn. 14, 68–112 (2010), 190–193. (See also Errata: Cubic polynomial maps with periodic critical orbit. II. Escape regions.) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bonk, M., Mayer, D.: Expanding Thurston maps (2010). arXiv:1009.3647
  10. 10.
    Branner, B., Hubbard, J.: The iteration of cubic polynomials, Part II. Acta Math. 169, 229–325 (1992) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bruin, H., Keller, G., Nowicki, T., van Strien, S.: Wild Cantor attractors exist. Ann. Math. 143, 97–130 (1996) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bruin, H., van Strien, S.: Monotonicity of entropy for real multimodal maps (2009). arXiv:0905.3377
  13. 13.
    Buff, X., Cheritat, A.: Examples of Julia sets with positive area. Ann. Math. 176, 673–746 (2012) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Douady, A.: Description of compact sets in \(\mathbb {C}\). In: Topological Methods in Modern Mathematics. A Symposium in Honor of John Milnor’s 60th Birthday (1993). Publish or Perish Google Scholar
  15. 15.
    Douady, A., Hubbard, J.H.: Étude dynamique des polynômes complexes. Parties I et II. Publications Mathématiques d’Orsay, 84-2 & 85-4 Google Scholar
  16. 16.
    Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like maps. Ann. Sci. Éc. Norm. Super. 18, 287–343 (1985) CrossRefGoogle Scholar
  17. 17.
    Douady, A., Hubbard, J.: A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, 263–297 (1993) MathSciNetCrossRefGoogle Scholar
  18. 18.
    DeMarco, L.: The moduli space of quadratic rational maps. J. Appl. Math. Simul. 20, 321–355 (2007) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Epstein, A.: Bounded hyperbolic components of quadratic rational maps. Ergod. Theory Dyn. Syst. 20, 727–748 (2000) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Friedlend, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dyn. Syst. 9, 67–99 (1989) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Goldberg, L., Milnor, J.: Fixed points of polynomial maps. Part II. Fixed point portraits. Ann. Sci. Éc. Norm. Super. 26, 51–98 (1993) CrossRefGoogle Scholar
  22. 22.
    Graczyk, J., Swiatek, G.: Generic hyperbolicity in the logistic family. Ann. Math. 146, 1–52 (1997) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hubbard, J.H.: Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz. In: Topological Methods in Modern Mathematics. A Symposium in Honor of John Milnor’s 60th Birthday (1993). Publish or Perish Google Scholar
  24. 24.
    Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kan, I.: Open set of diffeomorphisms having two attractors, each with an everywhere dense basin. Bull. Am. Meteorol. Soc. 31, 68–74 (1994) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kiwi, J.: Rational rays and critical portraits of complex polynomials. Thesis, Stony Brook (1997) Google Scholar
  27. 27.
    Kozlovsky, O., Shen, W., van Strien, S.: Rigidity for real polynomials. Ann. Math. 165, 749–841 (2007) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lyubich, M.: Back to the origin: Milnor’s program in dynamics. In: Topological Methods in Modern Mathematics. A Symposium in Honor of John Milnor’s 60th Birthday (1993). Publish or Perish Google Scholar
  29. 29.
    Lyubich, M.: Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. Math. 140, 347–404 (1994) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lyubich, M.: Dynamics of quadratic polynomials, I–II. Acta Math. 178, 185–297 (1997) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lyubich, M.: Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture. Ann. Math. 149, 319–420 (1999) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lyubich, M.: Dynamics of quadratic polynomials, III. Parapuzzle and SBR measure. In: Géométrie complexe et systémes dynamiques. Asterisque Volume in Honor of Douady’s 60th Birthday, vol. 261, pp. 173–200 (2000) Google Scholar
  33. 33.
    Lyubich, M.: Almost every real quadratic map is either regular or stochastic. Ann. Math. 156, 1–78 (2002) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lyubich, M.: Fourty years of unimodal dynamics: on the occasion of Artur Avila winning the Brin prize. J. Mod. Dyn. 6, 183–204 (2012) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lyubich, M., Milnor, J.: The Fibonacci unimodal map. J. Am. Math. Soc. 6, 425–457 (1993) MathSciNetCrossRefGoogle Scholar
  36. 36.
    McMullen, C.: Renormalization and Three Manifolds which Fiber over the Circle. Princeton University Press, Princeton (1996) zbMATHGoogle Scholar
  37. 37.
    Misiurewicz, M., Szlenk, H.: Entropy for piecewise monotone mappings. Studia Math. 67, 45–63 (1980) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Metropolis, M., Stein, M., Stein, P.: On finite limit sets for transformations of the unit interval. J. Comb. Theory 15, 25–44 (1973) MathSciNetCrossRefGoogle Scholar
  39. 39.
    de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993) CrossRefGoogle Scholar
  40. 40.
    Milnor, J.: Dynamics in One Complex Variable. Annals of Math. Studies, vol. 160. Princeton University Press, Princeton (2006) zbMATHGoogle Scholar
  41. 41.
    Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985) MathSciNetCrossRefGoogle Scholar
  42. 42.
    Milnor, J.: Self-similarity and hairiness in the Mandelbrot set. In: Computers in Geometry and Topology. Lect. Notes in Pure Appl. Math., vol. 114, pp. 211–257 (1989) Google Scholar
  43. 43.
    Milnor, J.: Remarks on iterated cubic maps. Exp. Math. 67, 5–24 (1992) MathSciNetzbMATHGoogle Scholar
  44. 44.
    Milnor, J.: Rational maps with two critical points. Exp. Math. 9, 481–522 (2000) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Milnor, J.: Local connectivity of Julia sets: Expository Lectures. In: Lei, T. (ed.) The Mandelbrot set, Theme and Variations. London Math. Soc. Lecture Note Series, vol. 274, pp. 67–116. Cambridge Univ Press, Cambridge Google Scholar
  46. 46.
    Milnor, J.: Pasting together Julia sets: a worked out example of mating. Exp. Math. 13, 55–92 (2004) MathSciNetCrossRefGoogle Scholar
  47. 47.
    Collected papers of John Milnor VI. Dynamical Systems (1953–2000) Amer. Math. Soc. 2012 Google Scholar
  48. 48.
    Milnor, J., Thurston, W.: On iterated maps of the interval. In: Alexander, J. (eds.) Dynamical Systems, Proc. U. Md., 1986–1987. Lect. Notes Math., vol. 1342, pp. 465–563 (1988) Google Scholar
  49. 49.
    Milnor, J., Tresser, C.: On entropy and monotonicity for real cubic maps. Commun. Math. Phys. 209, 123–178 (2000) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Palis, J.: A global view of dynamics and a conjecture of the denseness of finitude of attractors. Astérisque 261, 335–348 (2000) MathSciNetzbMATHGoogle Scholar
  51. 51.
    Poirier, A.: On the realization of the fixed point portraits (1992). arXiv:math/9201296
  52. 52.
    Petersen, C., Uhre, E.: The structure of parabolic slices Per1(e 2πip/q) in the moduli space of quadratic rational maps, in preparation Google Scholar
  53. 53.
    Rees, M.: Components of degree two rational maps. Invent. Math. 100, 357–382 (1990) MathSciNetCrossRefGoogle Scholar
  54. 54.
    Shen, W.: Decay of geometry for unimodal maps: an elementary proof. Ann. Math. 163, 383–404 (2006) MathSciNetCrossRefGoogle Scholar
  55. 55.
    Gol’berg, A.I., Sinai, Ya.G., Khanin, K.M.: Universal properties of sequences of period-tripling bifurcations. Russ. Math. Surv. 38, 187–188 (1983) MathSciNetCrossRefGoogle Scholar
  56. 56.
    Thurston, W.: On the geometry and dynamics of iterated rational maps. In: Schleicher, D., Peters, A.K. (eds.) Complex Dynamics: Friends and Families, pp. 3–110 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for Mathematical SciencesStony Brook UniversityStony BrookUSA

Personalised recommendations