Advertisement

The Work of John Tate

  • J. S. MilneEmail author
Chapter
Part of the The Abel Prize book series (AP)

Abstract

The article is an exposition of the work of Tate, written on the occasion of the award to him of the Abel prize. Tate’s work is explained in the context of “the great reformulation of arithmetic and geometry that has taken place since the 1950s”.

Keywords

Elliptic Curve Elliptic Curf Abelian Variety Group Scheme Global Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank B. Gross for help with dates, J.-P. Serre for correcting a misstatement, and J. Tate for answering my queries and pointing out some mistakes.

Supplementary material

The Abel Lecture by John Tate, the Abel Laureate 2010 (MP4 269 MB)

References

  1. An, S.Y., Kim, S.Y., Marshall, D.C., Marshall, S.H., McCallum, W.G., Perlis, A.R.: Jacobians of genus one curves. J. Number Theory 90(2), 304–315 (2001) MathSciNetzbMATHGoogle Scholar
  2. Arbarello, E., De Concini, C., Kac, V.G.: The infinite wedge representation and the reciprocity law for algebraic curves. In: Theta Functions—Bowdoin 1987, Part 1, Brunswick, ME, 1987. Proc. Sympos. Pure Math., 49, Part 1, pp. 171–190. Am. Math. Soc., Providence (1989) Google Scholar
  3. Armitage, J.V.: On a theorem of Hecke in number fields and function fields. Invent. Math. 2, 238–246 (1967) MathSciNetzbMATHGoogle Scholar
  4. Artin, E.: Über die Zetafunktionen gewisser algebraischer Zahlkörper. Math. Ann. 89(1–2), 147–156 (1923) MathSciNetzbMATHGoogle Scholar
  5. Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Abhandlungen Hamburg 5, 353–363 (1927) MathSciNetzbMATHGoogle Scholar
  6. Artin, M., Schelter, W.F.: Graded algebras of global dimension 3. Adv. Math. 66(2), 171–216 (1987) MathSciNetzbMATHGoogle Scholar
  7. Artin, M., Swinnerton-Dyer, H.P.F.: The Shafarevich–Tate conjecture for pencils of elliptic curves on K3 surfaces. Invent. Math. 20, 249–266 (1973) MathSciNetzbMATHGoogle Scholar
  8. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi–Yau varieties and potential automorphy II. P.R.I.M.S. 47, 29–98 (2011) MathSciNetzbMATHGoogle Scholar
  9. Bass, H., Schanuel, S.: The homotopy theory of projective modules. Bull. Am. Math. Soc. 68, 425–428 (1962) MathSciNetzbMATHGoogle Scholar
  10. Beilinson, A., Bloch, S., Esnault, H.: ε-factors for Gauss–Manin determinants. Dedicated to Yuri I. Manin on the occasion of his 65th birthday. Mosc. Math. J. 2(3), 477–532 (2002) MathSciNetzbMATHGoogle Scholar
  11. Beilinson, A., Drinfeld, V.: Chiral Algebras. American Mathematical Society Colloquium Publications, vol. 51. Am. Math. Soc., Providence (2004) zbMATHGoogle Scholar
  12. Beĭlinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys. 118(4), 651–701 (1988) MathSciNetzbMATHGoogle Scholar
  13. Berkovich, V.G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Mathematical Surveys and Monographs, vol. 33. Am. Math. Soc., Providence (1990) zbMATHGoogle Scholar
  14. Berkovich, V.G.: Etale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math. 78, 5–161 (1993) zbMATHGoogle Scholar
  15. Birch, B.J.: K 2 of global fields. 1969 number theory institute. In: Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, NY, 1969, pp. 87–95. Am. Math. Soc., Providence (1971) Google Scholar
  16. Bosch, S.: Lectures on Formal and Rigid Geometry, Preprint 378 of the SFB Geometrische Strukturen in der Mathematik, Münster (2005) Google Scholar
  17. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis. In: A Systematic Approach to Rigid Analytic Geometry. Grundlehren der Mathematischen Wissenschaften, vol. 261. Springer, Berlin (1984) zbMATHGoogle Scholar
  18. Boyer, P.: Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale. Invent. Math. 138(3), 573–629 (1999) MathSciNetzbMATHGoogle Scholar
  19. Brauer, R.: On Artin’s L-series with general group characters. Ann. of Math. (2) 48, 502–514 (1947) MathSciNetzbMATHGoogle Scholar
  20. Brauer, R.: A characterization of the characters of groups of finite order. Ann. of Math. (2) 57, 357–377 (1953) MathSciNetzbMATHGoogle Scholar
  21. Carayol, H.: Nonabelian Lubin–Tate theory. In: Automorphic Forms, Shimura Varieties, and L-Functions, Vol. II, Ann Arbor, MI, 1988. Perspect. Math., vol. 11, pp. 15–39. Academic Press, Boston (1990) Google Scholar
  22. Carayol, H.: La conjecture de Sato–Tate (d’après Clozel, Harris, Shepherd-Barron, Taylor). Séminaire Bourbaki. Vol. 2006/2007. Astérisque No. 317 (2008), Exp. No. 977, ix, 345–391 Google Scholar
  23. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956) zbMATHGoogle Scholar
  24. Cassels, J.W.S.: Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung. J. Reine Angew. Math. 211, 95–112 (1962) MathSciNetzbMATHGoogle Scholar
  25. Cassels, J.W.S.: Arithmetic on curves of genus 1. VII. The dual exact sequence. J. Reine Angew. Math. 216, 150–158 (1964) MathSciNetzbMATHGoogle Scholar
  26. Cassels, J.W.S.: Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math. 217, 180–199 (1965) MathSciNetzbMATHGoogle Scholar
  27. Cassels, J.W.S.: Diophantine equations with special reference to elliptic curves. J. Lond. Math. Soc. 41, 193–291 (1966) MathSciNetzbMATHGoogle Scholar
  28. Cassels, J.W.S., Fröhlich, A. (eds.): Algebraic Number Theory. Proceedings of an Instructional Conference Organized by the London Mathematical Society. Academic Press, London (1967). Thompson Book, Washington, DC zbMATHGoogle Scholar
  29. Cattani, E., Deligne, P., Kaplan, A.: On the locus of Hodge classes. J. Am. Math. Soc. 8(2), 483–506 (1995) MathSciNetzbMATHGoogle Scholar
  30. Chevalley, C.: Introduction to the Theory of Algebraic Functions of One Variable. Mathematical Surveys, vol. VI. Am. Math. Soc., New York (1951) zbMATHGoogle Scholar
  31. Chevalley, C.: Class Field Theory. Nagoya University, Nagoya (1954) zbMATHGoogle Scholar
  32. Clozel, L.: The Sato–Tate Conjecture. Current Developments in Mathematics, 2006, pp. 1–34. International Press, Somerville (2008) zbMATHGoogle Scholar
  33. de Jong, A.J.: Homomorphisms of Barsotti–Tate groups and crystals in positive characteristic. Invent. Math. 134(2), 301–333 (1998). Erratum: ibid. 138(1), 225 (1999) MathSciNetzbMATHGoogle Scholar
  34. Deligne, P.: Variétés abéliennes ordinaires sur un corps fini. Invent. Math. 8, 238–243 (1969) MathSciNetzbMATHGoogle Scholar
  35. Deligne, P.: Les constantes des équations fonctionnelles des fonctions L. In: Modular Functions of One Variable, II, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 349, pp. 501–597. Springer, Berlin (1973) Google Scholar
  36. Deligne, P.: Valeurs de fonctions L et périodes d’intégrales. In: Proc. Sympos. Pure Math., XXXIII, Oregon State Univ., Corvallis, OR, 1977. Automorphic Forms, Representations and L-Functions, pp. 313–346. Am. Math. Soc., Providence (1979). Part 2 Google Scholar
  37. Deligne, P.: Motifs et groupe de Taniyama. In: Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, vol. 900, pp. 261–279. Springer, Berlin (1982) zbMATHGoogle Scholar
  38. Deligne, P.: Hodge cycles on Abelian varieties (notes by J.S. Milne). In: Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Math., vol. 900, pp. 9–100. Springer, Berlin (1982) zbMATHGoogle Scholar
  39. Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular Functions of One Variable, II, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 349, pp. 143–316. Springer, Berlin (1973) Google Scholar
  40. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941) MathSciNetzbMATHGoogle Scholar
  41. Deuring, M.: Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. Nachr. Akad. Wiss. Göttingen, pp. 85–94 (1953) zbMATHGoogle Scholar
  42. Douady, A.: Cohomologie des groupes compacts totalement discontinus (d’après des notes de Serge Lang sur un article non publie de Tate). Séminaire Bourbaki, Vol. 5, Exp. No. 189, pp. 287–298. Soc. Math. France, Paris (1959) Google Scholar
  43. Drinfeld, V.G.: Elliptic modules. Mat. Sb. (N.S.) 94(136), 594–627 (1974), 656 (in Russian) MathSciNetGoogle Scholar
  44. Dwork, B.: On the Artin root number. Am. J. Math. 78, 444–472 (1956) MathSciNetzbMATHGoogle Scholar
  45. Dwork, B.: On the rationality of the zeta function of an algebraic variety. Am. J. Math. 82, 631–648 (1960) MathSciNetzbMATHGoogle Scholar
  46. Dwork, B.: A deformation theory for the zeta function of a hypersurface. In: Proc. Internat. Congr. Mathematicians, Stockholm, 1962, pp. 247–259. Inst. Mittag-Leffler, Djursholm (1963) Google Scholar
  47. Elzein, F.: Résidus en géométrie algébrique. C. R. Acad. Sci. Paris Sér. A-B 272, A878–A881 (1971) MathSciNetzbMATHGoogle Scholar
  48. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983). Erratum: Ibid. no. 2, 381 (1984) MathSciNetzbMATHGoogle Scholar
  49. Faltings, G.: Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten. In: Workshop Bonn 1984, Bonn, 1984. Lecture Notes in Math., vol. 1111, pp. 321–383. Springer, Berlin (1985) Google Scholar
  50. Faltings, G.: p-Adic Hodge theory. J. Am. Math. Soc. 1(1), 255–299 (1988) MathSciNetzbMATHGoogle Scholar
  51. Faltings, G., Wüstholz, G. (eds.): Rational Points. Papers from the Seminar Held at the Max-Planck-Institut für Mathematik, 1983/1984. Aspects of Mathematics, E6. Vieweg, Braunschweig (1984) Google Scholar
  52. Farrell, F.T.: An extension of Tate cohomology to a class of infinite groups. J. Pure Appl. Algebra 10(2), 153–161 (1977/78) MathSciNetzbMATHGoogle Scholar
  53. Finotti, L.R.A.: Canonical and minimal degree liftings of curves. J. Math. Sci. Univ. Tokyo 11(1), 1–47 (2004) MathSciNetzbMATHGoogle Scholar
  54. Fontaine, J.-M.: Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti–Tate. Ann. of Math. (2) 115(3), 529–577 (1982) MathSciNetzbMATHGoogle Scholar
  55. Garland, H.: A finiteness theorem for K 2 of a number field. Ann. of Math. (2) 94, 534–548 (1971) MathSciNetzbMATHGoogle Scholar
  56. Gonzalez, J.R., Romo, F.P.: A Negative Answer to the Question Of the Linearity of Tate’s Trace for the Sum of Two Endomorphisms (preprint 2012) Google Scholar
  57. Gordon, W.J.: Linking the conjectures of Artin–Tate and Birch–Swinnerton-Dyer. Compos. Math. 38(2), 163–199 (1979) MathSciNetzbMATHGoogle Scholar
  58. Green, W.: Heights in families of Abelian varieties. Duke Math. J. 58(3), 617–632 (1989) MathSciNetzbMATHGoogle Scholar
  59. Green, M., Griffiths, P., Kerr, M.: Mumford–Tate domains. Boll. Unione Mat. Ital. (9) 3(2), 281–307 (2010) MathSciNetzbMATHGoogle Scholar
  60. Greenberg, R., Stevens, G.: p-Adic L-functions and p-adic periods of modular forms. Invent. Math. 111(2), 407–447 (1993) MathSciNetzbMATHGoogle Scholar
  61. Grothendieck, A.: Sur une note de Mattuck–Tate. J. Reine Angew. Math. 200, 208–215 (1958) MathSciNetzbMATHGoogle Scholar
  62. Grothendieck, A.: Standard conjectures on algebraic cycles. In: Algebraic Geometry. Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968, pp. 193–199. Oxford Univ. Press, London (1969) Google Scholar
  63. Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001). With an appendix by Vladimir G. Berkovich zbMATHGoogle Scholar
  64. Hecke, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. I. Math. Z. 1, 357–376 (1918) MathSciNetzbMATHGoogle Scholar
  65. Hecke, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. II. Math. Z. 6, 11–51 (1920) MathSciNetGoogle Scholar
  66. Hecke, E.: Vorlesungen über die Theorie der algebraischen Zahlen, 2. Aufl. Akademische Verlagsgesellschaft, Leipzig (1954) (German) zbMATHGoogle Scholar
  67. Hodge, W.V.D.: The topological invariants of algebraic varieties. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 1, pp. 182–192. Am. Math. Soc., Providence (1952) Google Scholar
  68. Honda, T.: Isogeny classes of Abelian varieties over finite fields. J. Math. Soc. Jpn. 20, 83–95 (1968) MathSciNetzbMATHGoogle Scholar
  69. Iwasawa, K.: A note on functions. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 1, p. 322. Am. Math. Soc., Providence (1952) Google Scholar
  70. Iwasawa, K.: Letter to J. Dieudonné. In: Zeta Functions in Geometry, April 8, 1952. Adv. Stud. Pure Math., vol. 21, pp. 445–450. Kinokuniya, Tokyo (1992) Google Scholar
  71. Iwasawa, K.: Algebraic Functions. Translations of Mathematical Monographs, vol. 118. Am. Math. Soc., Providence (1993). Translated from the 1973 Japanese edition by Goro Kato zbMATHGoogle Scholar
  72. Kato, K.: p-Adic Hodge theory and values of zeta functions of modular forms. In: Cohomologies p-adiques et applications arithmétiques. III. Astérisque, vol. 295, pp. 117–290 (2004) Google Scholar
  73. Kato, K., Trihan, F.: On the conjectures of Birch and Swinnerton-Dyer in characteristic p>0. Invent. Math. 153(3), 537–592 (2003) MathSciNetzbMATHGoogle Scholar
  74. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009). II. Ibid. 505–586 MathSciNetzbMATHGoogle Scholar
  75. Kiehl, R.: Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie. Invent. Math. 2, 191–214 (1967). Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie. Ibid. 256–273 MathSciNetzbMATHGoogle Scholar
  76. Krull, W.: Galoissche Theorie der unendlichen algebraischen Erweiterungen. Math. Ann. 100, 687–698 (1928) MathSciNetzbMATHGoogle Scholar
  77. Kudla, S.: In: Bernstein, J., Gelbart, S. (eds.) An Introduction to the Langlands Program, p. 133. Birkhäuser, Boston (2003) Google Scholar
  78. Lang, S.: Diophantine approximations on toruses. Am. J. Math. 86, 521–533 (1964) MathSciNetzbMATHGoogle Scholar
  79. Lang, S.: Rapport sur la cohomologie des groupes. Benjamin, New York (1967) zbMATHGoogle Scholar
  80. Langlands, R.P.: Automorphic representations, Shimura varieties, and motives. In: Ein Märchen. Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977. Proc. Sympos. Pure Math., vol. XXXIII, pp. 205–246. Am. Math. Soc., Providence (1979). Part 2 Google Scholar
  81. Langlands, R.P.: Reflexions on receiving the Shaw prize. In: On Certain L-Functions. Clay Math. Proc., vol. 13, pp. 297–308. Am. Math. Soc., Providence (2011) zbMATHGoogle Scholar
  82. Levi, B.: Sull’equazione indeterminata del 3 ordine. Rom. 4. Math. Kongr. 2, 173–177 (1909) Google Scholar
  83. Lichtenbaum, S.: On the values of zeta and L-functions. I. Ann. of Math. (2) 96, 338–360 (1972) MathSciNetzbMATHGoogle Scholar
  84. Liu, Q., Lorenzini, D., Raynaud, M.: On the Brauer group of a surface. Invent. Math. 159(3), 673–676 (2005) MathSciNetzbMATHGoogle Scholar
  85. Lubin, J.: One-parameter formal Lie groups over p-adic integer rings. Ann. of Math. (2) 80, 464–484 (1964) MathSciNetzbMATHGoogle Scholar
  86. Lyons, C.: A rank inequality for the Tate conjecture over global function fields. Expo. Math. 27(2), 93–108 (2009) MathSciNetzbMATHGoogle Scholar
  87. Manin, J.I.: The Tate height of points on an Abelian variety, its variants and applications. Izv. Akad. Nauk SSSR, Ser. Mat. 28, 1363–1390 (1964) (Russian) MathSciNetzbMATHGoogle Scholar
  88. Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. Éc. Norm. Super. 2, 1–62 (1969) zbMATHGoogle Scholar
  89. Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1977) MathSciNetzbMATHGoogle Scholar
  90. McCabe, J.: p-Adic theta functions. Ph.D. thesis, Harvard (1968), 222 pp. Google Scholar
  91. Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124(1–3), 437–449 (1996) MathSciNetzbMATHGoogle Scholar
  92. Merkurjev, A.S., Suslin, A.A.: K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR, Ser. Mat. 46(5), 1011–1046 (1982), 1135–1136 (Russian) MathSciNetGoogle Scholar
  93. Messing, W.: The Crystals Associated to Barsotti–Tate Groups: With Applications to Abelian Schemes. Lecture Notes in Mathematics, vol. 264. Springer, Berlin (1972) zbMATHGoogle Scholar
  94. Milne, J.S.: Weil–Châtelet groups over local fields. Ann. Sci. Éc. Norm. Super. 3, 273–284 (1970); ibid. 5, 261–264 (1972) zbMATHGoogle Scholar
  95. Milne, J.S.: On a conjecture of Artin and Tate. Ann. of Math. (2) 102(3), 517–533 (1975) MathSciNetzbMATHGoogle Scholar
  96. Milne, J.S.: Comparison of the Brauer group with the Tate–Shafarevich group. J. Fac. Sci. Univ. Tokyo (Shintani Memorial Volume) IA 28, 735–743 (1982) zbMATHGoogle Scholar
  97. Milne, J.S.: Arithmetic Duality Theorems. Perspectives in Mathematics, vol. 1. Academic Press, Boston (1986) zbMATHGoogle Scholar
  98. Milne, J.S.: Lefschetz motives and the Tate conjecture. Compos. Math. 117(1), 45–76 (1999) MathSciNetzbMATHGoogle Scholar
  99. Milne, J.S.: Rational Tate classes. Mosc. Math. J. 9(1), 111–141 (2009) MathSciNetzbMATHGoogle Scholar
  100. Milnor, J.: Algebraic K-theory and quadratic forms. Invent. Math. 9, 318–344 (1969/1970) MathSciNetzbMATHGoogle Scholar
  101. Milnor, J.: Introduction to Algebraic K-Theory. Annals of Mathematics Studies, vol. 72. Princeton University Press, Princeton (1971) zbMATHGoogle Scholar
  102. Moore, C.C.: Group extensions of p-adic and adelic linear groups. Inst. Hautes Études Sci. Publ. Math. 35, 157–222 (1968) MathSciNetGoogle Scholar
  103. Mumford, D.: Families of Abelian varieties. In: Algebraic Groups and Discontinuous Subgroups. Proc. Sympos. Pure Math., Boulder, Colo, 1965, pp. 347–351. Am. Math. Soc., Providence (1966) Google Scholar
  104. Mumford, D.: An analytic construction of degenerating curves over complete local rings. Compos. Math. 24, 129–174 (1972) MathSciNetzbMATHGoogle Scholar
  105. Nakayama, T.: Cohomology of class field theory and tensor product modules I. Ann. of Math. 65, 255–267 (1957) MathSciNetzbMATHGoogle Scholar
  106. Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Inst. Hautes Études Sci. Publ. Math. No. 21 (1964), 128 pp. zbMATHGoogle Scholar
  107. Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. of Math. (2) 82, 249–331 (1965) MathSciNetzbMATHGoogle Scholar
  108. Piatetski-Shapiro, I.I.: Interrelations between the Tate and Hodge hypotheses for Abelian varieties. Mat. Sb. (N.S.) 85(127), 610–620 (1971) (Russian) MathSciNetzbMATHGoogle Scholar
  109. Pohlmann, H.: Algebraic cycles on Abelian varieties of complex multiplication type. Ann. of Math. (2) 88, 161–180 (1968) MathSciNetzbMATHGoogle Scholar
  110. Quillen, D.: Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories. In: Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972. Lecture Notes in Math., vol. 341, pp. 85–147. Springer, Berlin (1973) Google Scholar
  111. Raynaud, M.: Variétés abéliennes et géométrie rigide. Actes du Congrès International des Mathématiciens, Nice, 1970, pp. 473–477. Gauthier-Villars, Paris (1971), Tome 1 zbMATHGoogle Scholar
  112. Raynaud, M.: Schémas en groupes de type (p,…,p). Bull. Soc. Math. Fr. 102, 241–280 (1974) zbMATHGoogle Scholar
  113. Roquette, P.: Arithmetischer Beweis der Riemannschen Vermutung in Kongruenzfunktionenkörpern beliebigen Geschlechts. J. Reine Angew. Math. 191, 199–252 (1953) MathSciNetzbMATHGoogle Scholar
  114. Roquette, P.: Analytic Theory of Elliptic Functions over Local Fields. Hamburger Mathematische Einzelschriften (N.F.), vol. 1. Vandenhoeck & Ruprecht, Göttingen (1970) zbMATHGoogle Scholar
  115. Schappacher, N.: The Bourbaki Congress at El Escorial and other mathematical (non)events of 1936. In: The Mathematical Intelligencer, Special issue International Congress of Mathematicians, Madrid, August 2006, pp. 8–15 (2006) Google Scholar
  116. Schröer, S.: On genus change in algebraic curves over imperfect fields. Proc. Am. Math. Soc. 137(4), 1239–1243 (2009) MathSciNetzbMATHGoogle Scholar
  117. Serre, J.-P.: Cohomologie et arithmétique, Séminaire Bourbaki 1952/1953, no. 77 Google Scholar
  118. Serre, J.-P.: Sur la dimension homologique des anneaux et des modules noethériens. In: Proceedings of the International Symposium on Algebraic Number Theory, Tokyo & Nikko, 1955, pp. 175–189. Science Council of Japan, Tokyo (1956) Google Scholar
  119. Serre, J.-P.: Cohomologie Galoisienne. In: Cours au Collège de France (1962–1963), 2nd edn. Lecture Notes in Mathematics, vol. 5. Springer, Berlin (1964a) zbMATHGoogle Scholar
  120. Serre, J.-P.: Groupes de Lie l-adiques attachés aux courbes elliptiques. In: Colloque de Clermond-Ferrand. Les Tendances Géom. en Algébre et Théorie des Nombres, pp. 239–256 (1964b). Éditions du Centre National de la Recherche Scientifique, Paris (1966) Google Scholar
  121. Serre, J.-P.: Algèbre locale. In: Multiplicités, 2nd edn. Lecture Notes in Mathematics, vol. 11. Springer, Berlin (1965) zbMATHGoogle Scholar
  122. Serre, J.-P.: Abelian l-Adic Representations and Elliptic Curves. Benjamin, New York (1968a) zbMATHGoogle Scholar
  123. Serre, J.-P.: Œuvres, Vol. II. Springer, Berlin (1968b) Google Scholar
  124. Shimura, G.: Reduction of algebraic varieties with respect to a discrete valuation of the basic field. Am. J. Math. 77, 134–176 (1955) MathSciNetzbMATHGoogle Scholar
  125. Shimura, G.: On Abelian varieties with complex multiplication. Proc. London Math. Soc. (3) 34(1), 65–86 (1977) MathSciNetzbMATHGoogle Scholar
  126. Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and Its Applications to Number Theory. Publications of the Mathematical Society of Japan, vol. 6. Mathematical Society of Japan, Tokyo (1961) zbMATHGoogle Scholar
  127. Siegel, C.L.: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 15–56 (1970) zbMATHGoogle Scholar
  128. Stark, H.M.: Values of L-functions at s=1. I. L-Functions for quadratic forms. Adv. Math. 7, 301–343 (1971) MathSciNetzbMATHGoogle Scholar
  129. Stark, H.M.: Values of L-functions at s=1. II. Artin L-functions with rational characters. Adv. Math. 17(1), 60–92 (1975) zbMATHGoogle Scholar
  130. Stark, H.M.: Values of L-functions at s=1. III. Totally real fields and Hilbert’s twelfth problem. Adv. Math. 22(1), 64–84; (1976) zbMATHGoogle Scholar
  131. Stark, H.M.: Values of L-functions at s=1. IV. First derivatives at s=0. Adv. Math. 35(3), 197–235 (1980) MathSciNetzbMATHGoogle Scholar
  132. Tan, K.-S.: Refined theorems of the Birch and Swinnerton-Dyer type. Ann. Inst. Fourier (Grenoble) 45(2), 317–374 (1995) MathSciNetzbMATHGoogle Scholar
  133. Taylor, M.J.: Obituary: Albrecht Fröhlich, 1916–2001. Bull. Lond. Math. Soc. 38(2), 329–350 (2006) MathSciNetzbMATHGoogle Scholar
  134. Ulmer, D.: Elliptic curves with large rank over function fields. Ann. of Math. (2) 155(1), 295–315 (2002) MathSciNetzbMATHGoogle Scholar
  135. Weil, A.: Remarques sur des résultats recents de C. Chevalley. C. R. Acad. Sci., Paris 203, 1208–1210 (1936) zbMATHGoogle Scholar
  136. Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent. Publ. Inst. Math. Univ. Strasbourg 7 (1945) Google Scholar
  137. Weil, A.: Variétés abéliennes et courbes algébriques. Actualités Sci. Ind., no. 1064 = Publ. Inst. Math. Univ. Strasbourg 8 (1946). Hermann & Cie., Paris (1948) Google Scholar
  138. Weil, A.: Sur la théorie du corps de classes. J. Math. Soc. Jpn. 3, 1–35 (1951) zbMATHGoogle Scholar
  139. Weil, A.: Remarques sur un mémoire d’Hermite. Arch. Math. (Basel) 5, 197–202 (1954) MathSciNetzbMATHGoogle Scholar
  140. Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131(3), 493–540 (1990) MathSciNetzbMATHGoogle Scholar
  141. Zariski, O.: Complete linear systems on normal varieties and a generalization of a lemma of Enriques-Severi. Ann. of Math. (2) 55, 552–592 (1952) MathSciNetzbMATHGoogle Scholar
  142. Zariski, O.: Scientific report on the second summer institute, III algebraic sheaf theory. Bull. Am. Math. Soc. 62, 117–141 (1956) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations