Advertisement

9 Mucosal Immunology in Candida albicans Infection

  • Günther Weindl
  • Julian R. Naglik
  • David L. Moyes
  • Martin SchallerEmail author
Chapter
Part of the The Mycota book series (MYCOTA, volume 12)

Abstract

The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. Clinical observations suggest that mucocutaneous Candida infections are commonly associated with defective cell-mediated immune responses. The importance of the mucosal immune system as a first-line defence against pathogenic challenge has long been recognized. Over the last decade, the identity of many key molecules mediating host defence have been identified. Central to these developments is the discovery of pattern recognition receptors such as Toll-like receptors and C-type lectin receptors that induce innate immune responses and also modulate cellular and humoral adaptive immunity during Candida infections. We address the most relevant pattern recognition receptors and their signalling mechanisms in oral mucosa to gain a better understanding of their contributions to antifungal immunity at mucosal surfaces.

Keywords

Antimicrobial Peptide Oral Mucosa Candida Infection Mannose Receptor Oral Candidiasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the BMBF (0315409B), Deutsche Forschungsgemeinschaft (Sch897/1-3, graduate college 685) and by a NIDCR grant R01 DE017514-01. J.N. and D.M are funded by the MRC (MR-J008303-1) and BBSRC (BB-J016411-1).

References

  1. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646PubMedGoogle Scholar
  2. Ali A, Natah S, Konttinen Y (2008) Differential expression of Toll-like receptors in chronic hyperplastic candidosis. Oral Microbiol Immunol 23:299–307PubMedGoogle Scholar
  3. Arendorf TM, Walker DM (1979) Oral candidal populations in health and disease. Br Dent J 147:267–272PubMedGoogle Scholar
  4. Beck-Sague C, Jarvis WR (1993) Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. National Nosocomial Infections Surveillance System. J Infect Dis 167:1247–1251PubMedGoogle Scholar
  5. Beklen A, Hukkanen M, Richardson R, Konttinen YT (2008) Immunohistochemical localization of Toll-like receptors 1–10 in periodontitis. Oral Microbiol Immunol 23:425–431PubMedGoogle Scholar
  6. Bozza S, Zelante T, Moretti S, Bonifazi P, DeLuca A, D’Angelo C, Giovannini G, Garlanda C, Boon L, Bistoni F, Puccetti P, Mantovani A, Romani L (2008) Lack of Toll IL-1R8 exacerbates Th17 cell responses in fungal infection. J Immunol 180:4022–4031PubMedGoogle Scholar
  7. Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33–43PubMedGoogle Scholar
  8. Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197:1119–1124PubMedGoogle Scholar
  9. Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19:455–464PubMedGoogle Scholar
  10. Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335PubMedGoogle Scholar
  11. Challacombe SJ, Naglik JR (2006) The effects of HIV infection on oral mucosal immunity. Adv Dent Res 19:29–35PubMedGoogle Scholar
  12. Clemons KV, Stevens DA (2001) Overview of host defense mechanisms in systemic mycoses and the basis for immunotherapy. Semin Respir Infect 16:60–66PubMedGoogle Scholar
  13. Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW, Filler SG, Masso-Welch P, Edgerton M, Gaffen SL (2009) Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206:299–311PubMedGoogle Scholar
  14. Cutler CW, Jotwani R (2006) Dendritic cells at the oral mucosal interface. J Dent Res 85:678–689PubMedGoogle Scholar
  15. de Boer AD, de Groot PW, Weindl G, Schaller M, Riedel D, Diez-Orejas R, Klis FM, de Koster CG, Dekker HL, Gross U, Bader O, Weig M (2010) The Candida albicans cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence. Yeast 27:611–624PubMedGoogle Scholar
  16. De Luca A, Montagnoli C, Zelante T, Bonifazi P, Bozza S, Moretti S, D’Angelo C, Vacca C, Boon L, Bistoni F, Puccetti P, Fallarino F, Romani L (2007) Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol 179:5999–6008PubMedGoogle Scholar
  17. den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JG, Veerman EC, Nieuw Amerongen AV (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388:689–695Google Scholar
  18. Diamond G, Beckloff N, Ryan LK (2008) Host defense peptides in the oral cavity and the lung: similarities and differences. J Dent Res 87:915–927PubMedGoogle Scholar
  19. Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T, Ziegler S, Unutmaz D, Pulendran B (2006) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 116:916–928PubMedGoogle Scholar
  20. Dongari-Bagtzoglou A, Fidel PL (2005) The host cytokine responses and protective immunity in oropharyngeal candidiasis. J Dent Res 84:966–977PubMedGoogle Scholar
  21. Dongari-Bagtzoglou A, Kashleva H (2003) Granulocyte-macrophage colony-stimulating factor responses of oral epithelial cells to Candida albicans. Oral Microbiol Immunol 18:165–170PubMedGoogle Scholar
  22. Evans SE, Hahn PY, McCann F, Kottom TJ, Pavlovic ZV, Limper AH (2005) Pneumocystis cell wall beta-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-kappaB-dependent mechanisms. Am J Respir Cell Mol Biol 32:490–497PubMedGoogle Scholar
  23. Eversole LR, Reichart PA, Ficarra G, Schmidt-Westhausen A, Romagnoli P, Pimpinelli N (1997) Oral keratinocyte immune responses in HIV-associated candidiasis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 84:372–380PubMedGoogle Scholar
  24. Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H, Ring J, Traidl-Hoffmann C (2008) Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol 128:2640–2645PubMedGoogle Scholar
  25. Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, van der Ven AJ (2007) The Toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21:1375–1377PubMedGoogle Scholar
  26. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morre SA, Vriend G, Williams DL, Perfect JR, Joosten LA, Wijmenga C, van der Meer JW, Adema GJ, Kullberg BJ, Brown GD, Netea MG (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760–1767PubMedGoogle Scholar
  27. Fidel PL (2002) Distinct protective host defenses against oral and vaginal candidiasis. Med Mycol 40:359–375PubMedGoogle Scholar
  28. Fidel PL Jr, Ginsburg KA, Cutright JL, Wolf NA, Leaman D, Dunlap K, Sobel JD (1997) Vaginal-associated immunity in women with recurrent vulvovaginal candidiasis: evidence for vaginal Th1-type responses following intravaginal challenge with Candida antigen. J Infect Dis 176:728–739PubMedGoogle Scholar
  29. Filewod NC, Pistolic J, Hancock RE (2009) Low concentrations of LL-37 alter IL-8 production by keratinocytes and bronchial epithelial cells in response to proinflammatory stimuli. FEMS Immunol Med Microbiol 56:233–240PubMedGoogle Scholar
  30. Filler SG, Yeaman MR, Sheppard D (2005) Tumor necrosis factor inhibition and invasive fungal infections. Clin Infect Dis 41(Suppl 3):S208–S212PubMedGoogle Scholar
  31. Franchi L, Munoz-Planillo R, Reimer T, Eigenbrod T, Nunez G (2010) Inflammasomes as microbial sensors. Eur J Immunol 40:611–615PubMedGoogle Scholar
  32. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567PubMedGoogle Scholar
  33. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117PubMedGoogle Scholar
  34. Gauglitz GG, Callenberg H, Weindl G, Korting HC (2012) Host defence against Candida albicans and the role of pattern-recognition receptors. Acta Derm Venereol 92:291–298PubMedGoogle Scholar
  35. Gazi U, Rosas M, Singh S, Heinsbroek S, Haq I, Johnson S, Brown GD, Williams DL, Taylor PR, Martinez-Pomares L (2011) Fungal recognition enhances mannose receptor shedding through dectin-1 engagement. J Biol Chem 286:7822–7829PubMedGoogle Scholar
  36. Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, Jamal S, Manguiat A, Rezaei N, Amirzargar AA, Plebani A, Hannesschlager N, Gross O, Ruland J, Grimbacher B (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361:1727–1735PubMedGoogle Scholar
  37. Godaly G, Bergsten G, Hang L, Fischer H, Frendéus B, Lundstedt AC, Samuelsson M, Samuelsson P, Svanborg C (2001) Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol 69:899–906PubMedGoogle Scholar
  38. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436PubMedGoogle Scholar
  39. Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13:817–822PubMedGoogle Scholar
  40. Herre J, Gordon S, Brown GD (2004) Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 40:869–876PubMedGoogle Scholar
  41. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497PubMedGoogle Scholar
  42. Huang W, Na L, Fidel PL, Schwarzenberger P (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190:624–631PubMedGoogle Scholar
  43. Hube B, Naglik J (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147:1997–2005PubMedGoogle Scholar
  44. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedGoogle Scholar
  45. Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581PubMedGoogle Scholar
  46. Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, Ersvaer E, Perheentupa J, Erichsen MM, Bratanic N, Meloni A, Cetani F, Perniola R, Ergun-Longmire B, Maclaren N, Krohn KJ, Pura M, Schalke B, Strobel P, Leite MI, Battelino T, Husebye ES, Peterson P, Willcox N, Meager A (2010) Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 207:299–308PubMedGoogle Scholar
  47. Kumar H, Kumagai Y, Tsuchida T, Koenig PA, Satoh T, Guo Z, Jang MH, Saitoh T, Akira S, Kawai T (2009) Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J Immunol 183:8061–8067PubMedGoogle Scholar
  48. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, van Bruggen R, Tschopp J (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55:443–452PubMedGoogle Scholar
  49. Lamagni TL, Evans BG, Shigematsu M, Johnson EM (2001) Emerging trends in the epidemiology of invasive mycoses in England and Wales (1990–9). Epidemiol Infect 126:397–414PubMedGoogle Scholar
  50. Laube DM, Dongari-Bagtzoglou A, Kashleva H, Eskdale J, Gallagher G, Diamond G (2008) Differential regulation of innate immune response genes in gingival epithelial cells stimulated with Aggregatibacter actinomycetemcomitans. J Periodont Res 43:116–123PubMedGoogle Scholar
  51. Lee HM, Shin DM, Choi DK, Lee ZW, Kim KH, Yuk JM, Kim CD, Lee JH, Jo EK (2009a) Innate immune responses to Mycobacterium ulcerans via Toll-like receptors and dectin-1 in human keratinocytes. Cell Microbiol 11:678–692PubMedGoogle Scholar
  52. Lee HM, Yuk JM, Shin DM, Jo EK (2009b) Dectin-1 is inducible and plays an essential role for mycobacteria-induced innate immune responses in airway epithelial cells. J Clin Immunol 29:795–805PubMedGoogle Scholar
  53. Leibundgut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e Sousa C (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638PubMedGoogle Scholar
  54. Li L, Dongari-Bagtzoglou A (2009) Epithelial GM-CSF induction by Candida glabrata. J Dent Res 88:746–751PubMedGoogle Scholar
  55. Li L, Redding S, Dongari-Bagtzoglou A (2007) Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res 86:204–215PubMedGoogle Scholar
  56. López-García B, Lee PH, Yamasaki K, Gallo RL (2005) Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 125:108–115PubMedGoogle Scholar
  57. Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, Fulcher DA, Tangye SG, Cook MC (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205:1551–1557PubMedGoogle Scholar
  58. Mahanonda R, Pichyangkul S (2007) Toll-like receptors and their role in periodontal health and disease. Periodontol 2000 43:41–55PubMedGoogle Scholar
  59. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265PubMedGoogle Scholar
  60. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776PubMedGoogle Scholar
  61. Mostefaoui Y, Claveau I, Rouabhia M (2004) In vitro analyses of tissue structure and interleukin-1beta expression and production by human oral mucosa in response to Candida albicans infections. Cytokine 25:162–171PubMedGoogle Scholar
  62. Moyes DL, Naglik JR (2011) Mucosal immunity and Candida albicans infection. Clin Dev Immunol 2011:346307PubMedGoogle Scholar
  63. Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, Kohli A, Islam A, Mora-Montes H, Challacombe SJ, Naglik JR (2010) A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8:225–235PubMedGoogle Scholar
  64. Moyes DL, Murciano C, Runglall M, Islam A, Thavaraj S, Naglik JR (2011) Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS One 6:e26580PubMedGoogle Scholar
  65. Moyes DL, Murciano C, Runglall M, Kohli A, Islam A, Naglik JR (2012) Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae. Med Microbiol Immunol 201:93–101PubMedGoogle Scholar
  66. Murciano C, Moyes DL, Runglall M, Islam A, Mille C, Fradin C, Poulain D, Gow NA, Naglik JR (2011) Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect Immun 79:4902–4911PubMedGoogle Scholar
  67. Naglik JR, Moyes D (2011) Epithelial cell innate response to Candida albicans. Adv Dent Res 23:50–55PubMedGoogle Scholar
  68. Naglik JR, Moyes D, Makwana J, Kanzaria P, Tsichlaki E, Weindl G, Tappuni AR, Rodgers CA, Woodman AJ, Challacombe SJ, Schaller M, Hube B (2008) Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154:3266–3280PubMedGoogle Scholar
  69. Naglik JR, Moyes DL, Wachtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 13:963–976PubMedGoogle Scholar
  70. Netea MG, van Tits LJ, Curfs JH, Amiot F, Meis JF, van der Meer JW, Kullberg BJ (1999) Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J Immunol 163:1498–1505PubMedGoogle Scholar
  71. Netea MG, Sutmuller R, Hermann C, van der Graaf CA, Van der Meer JW, van Krieken JH, Hartung T, Adema G, Kullberg BJ (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172:3712–3718PubMedGoogle Scholar
  72. Netea MG, Gow NA, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes HB, Jansen T, Jacobs L, Buurman ET, Gijzen K, Williams DL, Torensma R, McKinnon A, MacCallum DM, Odds FC, Van der Meer JW, Brown AJ, Kullberg BJ (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116:1642–1650PubMedGoogle Scholar
  73. Netea MG, Brown GD, Kullberg BJ, Gow NA (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78PubMedGoogle Scholar
  74. Osorio F, LeibundGut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reis e Sousa C (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38:3274–3281PubMedGoogle Scholar
  75. Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernandez-Santos N, Edgerton M, Gaffen SL, Lenardo MJ (2011) CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34:422–434PubMedGoogle Scholar
  76. Papadopoulos AI, Ferwerda B, Antoniadou A, Sakka V, Galani L, Kavatha D, Panagopoulos P, Poulakou G, Kanellakopoulou K, van der Meer JW, Giamarellos-Bourboulis EJ, Netea MG (2010) Association of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms with increased infection risk in patients with advanced HIV-1 infection. Clin Infect Dis 51:242–247PubMedGoogle Scholar
  77. Pivarcsi A, Bodai L, Réthi B, Kenderessy-Szabó A, Koreck A, Széll M, Beer Z, Bata-Csörgoo Z, Magócsi M, Rajnavölgyi E, Dobozy A, Kemény L (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15:721–730PubMedGoogle Scholar
  78. Plantinga TS, Hamza OJ, Willment JA, Ferwerda B, van de Geer NM, Verweij PE, Matee MI, Banahan K, O’Neill LA, Kullberg BJ, Brown GD, van der Ven AJ, Netea MG (2010) Genetic variation of innate immune genes in HIV-infected African patients with or without oropharyngeal candidiasis. J Acquir Immune Defic Syndr 55:87–94PubMedGoogle Scholar
  79. Plantinga TS, Johnson MD, Scott WK, Joosten LA, van der Meer JW, Perfect JR, Kullberg BJ, Netea MG (2012) Human genetic susceptibility to Candida infections. Med Mycol 50:785–794PubMedGoogle Scholar
  80. Reaves TA, Chin AC, Parkos CA (2005) Neutrophil transepithelial migration: role of Toll-like receptors in mucosal inflammation. Mem Inst Oswaldo Cruz 100(Suppl 1):191–198PubMedGoogle Scholar
  81. Reid DM, Montoya M, Taylor PR, Borrow P, Gordon S, Brown GD, Wong SY (2004) Expression of the beta-glucan receptor, dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J Leukoc Biol 76:86–94PubMedGoogle Scholar
  82. Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhart BE, Barker LA, Breuel KF, Deponti WK, Kalbfleisch JH, Ensley HE, Brown GD, Gordon S, Williams DL (2005) Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther 314:1079–1086PubMedGoogle Scholar
  83. Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC (2004) Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol 42:485–498PubMedGoogle Scholar
  84. Romani L (1999) Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr Opin Microbiol 2:363–367PubMedGoogle Scholar
  85. Rouabhia M, Ross G, Page N, Chakir J (2002) Interleukin-18 and gamma interferon production by oral epithelial cells in response to exposure to Candida albicans or lipopolysaccharide stimulation. Infect Immun 70:7073–7080PubMedGoogle Scholar
  86. Ruhnke M (2006) Epidemiology of Candida albicans infections and role of non-Candida-albicans yeasts. Curr Drug Targets 7:495–504PubMedGoogle Scholar
  87. Rupniak HT, Rowlatt C, Lane EB, Steele JG, Trejdosiewicz LK, Laskiewicz B, Povey S, Hill BT (1985) Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck. J Natl Cancer Inst 75:621–635PubMedGoogle Scholar
  88. Ryan KR, Hong M, Arkwright PD, Gennery AR, Costigan C, Dominguez M, Denning D, McConnell V, Cant AJ, Abinun M, Spickett GP, Lilic D (2008) Impaired dendritic cell maturation and cytokine production in patients with chronic mucocutanous candidiasis with or without APECED. Clin Exp Immunol 154:406–414PubMedGoogle Scholar
  89. Samaranayake LP, Keung Leung W, Jin L (2009) Oral mucosal fungal infections. Periodontol 2000 49:39–59PubMedGoogle Scholar
  90. Savolainen J, Rantala A, Nermes M, Lehtonen L, Viander M (1996) Enhanced IgE response to Candida albicans in postoperative invasive candidiasis. Clin Exp Allergy 26:452–460PubMedGoogle Scholar
  91. Schaller M, Weindl G (2009) Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia for the study of host-pathogen interactions. Methods Mol Biol 470:327–345PubMedGoogle Scholar
  92. Schaller M, Schäfer W, Korting HC, Hube B (1998) Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 29:605–615PubMedGoogle Scholar
  93. Schaller M, Korting HC, Schäfer W, Bastert J, Chen W, Hube B (1999) Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34:169–180PubMedGoogle Scholar
  94. Schaller M, Mailhammer R, Grassl G, Sander CA, Hube B, Korting HC (2002) Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J Invest Dermatol 118:652–657PubMedGoogle Scholar
  95. Schaller M, Boeld U, Oberbauer S, Hamm G, Hube B, Korting HC (2004) Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology 150:2807–2813PubMedGoogle Scholar
  96. Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377PubMedGoogle Scholar
  97. Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC (2005) Human defensins. J Mol Med 83:587–595PubMedGoogle Scholar
  98. Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S, Dickensheets H, Dumoutier L, Renauld JC, Zdanov A, Donnelly RP, Kotenko SV (2004) Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol 172:2006–2010PubMedGoogle Scholar
  99. Steubesand N, Kiehne K, Brunke G, Pahl R, Reiss K, Herzig KH, Schubert S, Schreiber S, Folsch UR, Rosenstiel P, Arlt A (2009) The expression of the beta-defensins hBD-2 and hBD-3 is differentially regulated by NF-kappaB and MAPK/AP-1 pathways in an in vitro model of Candida esophagitis. BMC Immunol 10:36PubMedGoogle Scholar
  100. Strober W (2004) Epithelial cells pay a Toll for protection. Nat Med 10:898–900PubMedGoogle Scholar
  101. Sugawara Y, Uehara A, Fujimoto Y, Kusumoto S, Fukase K, Shibata K, Sugawara S, Sasano T, Takada H (2006) Toll-like receptors, NOD1, and NOD2 in oral epithelial cells. J Dent Res 85:524–529PubMedGoogle Scholar
  102. Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116:485–494PubMedGoogle Scholar
  103. Szolnoky G, Bata-Csorgo Z, Kenderessy AS, Kiss M, Pivarcsi A, Novak Z, Nagy Newman K, Michel G, Ruzicka T, Marodi L, Dobozy A, Kemeny L (2001) A mannose-binding receptor is expressed on human keratinocytes and mediates killing of Candida albicans. J Invest Dermatol 117:205–213PubMedGoogle Scholar
  104. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376PubMedGoogle Scholar
  105. Tardif F, Goulet JP, Zakrazewski A, Chauvin P, Rouabhia M (2004) Involvement of interleukin-18 in the inflammatory response against oropharyngeal candidiasis. Med Sci Monit 10:BR239–BR249PubMedGoogle Scholar
  106. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY (2002) The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169:3876–3882PubMedGoogle Scholar
  107. Taylor PR, Gordon S, Martinez-Pomares L (2005a) The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol 26:104–110PubMedGoogle Scholar
  108. Taylor PR, Martinez-Pomares L, Stacey M, Lin H, Brown GD, Gordon S (2005b) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944PubMedGoogle Scholar
  109. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–38PubMedGoogle Scholar
  110. Tomalka J, Ganesan S, Azodi E, Patel K, Majmudar P, Hall BA, Fitzgerald KA, Hise AG (2011) A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog 7:e1002379PubMedGoogle Scholar
  111. Uehara A, Takada H (2008) Synergism between TLRs and NOD1/2 in oral epithelial cells. J Dent Res 87:682–686PubMedGoogle Scholar
  112. Uehara A, Sugawara Y, Kurata S, Fujimoto Y, Fukase K, Kusumoto S, Satta Y, Sasano T, Sugawara S, Takada H (2005) Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via Toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell Microbiol 7:675–686PubMedGoogle Scholar
  113. Uehara A, Fujimoto Y, Fukase K, Takada H (2007) Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 44:3100–3111PubMedGoogle Scholar
  114. Underhill DM, Rossnagle E, Lowell CA, Simmons RM (2005) Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:2543–2550PubMedGoogle Scholar
  115. van de Veerdonk FL, Joosten LA, Devesa I, Mora-Montes HM, Kanneganti TD, Dinarello CA, van der Meer JW, Gow NA, Kullberg BJ, Netea MG (2009a) Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1beta production by the fungal pathogen Candida albicans. J Infect Dis 199:1087–1096PubMedGoogle Scholar
  116. van de Veerdonk FL, Marijnissen RJ, Kullberg BJ, Koenen HJ, Cheng SC, Joosten I, van den Berg WB, Williams DL, van der Meer JW, Joosten LA, Netea MG (2009b) The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5:329–340PubMedGoogle Scholar
  117. van de Veerdonk FL, Joosten LA, Shaw PJ, Smeekens SP, Malireddi RK, van der Meer JW, Kullberg BJ, Netea MG, Kanneganti TD (2011) The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur J Immunol 41:2260–2268PubMedGoogle Scholar
  118. van der Graaf CA, Netea MG, Franke B, Girardin SE, Van der Meer JW, Kullberg BJ (2006) Nucleotide oligomerization domain 2 (Nod2) is not involved in the pattern recognition of Candida albicans. Clin Vaccine Immunol 13:423–425PubMedGoogle Scholar
  119. Vignali DA, Collison L, Workman C (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532PubMedGoogle Scholar
  120. Vylkova S, Li XS, Berner JC, Edgerton M (2006) Distinct antifungal mechanisms: beta-defensins require Candida albicans Ssa1 protein, while Trk1p mediates activity of cysteine-free cationic peptides. Antimicrob Agents Chemother 50:324–331PubMedGoogle Scholar
  121. Wagener J, Mailänder-Sanchez D, Schaller M (2012a) Immune responses to Candida albicans in models of in vitro reconstituted human oral epithelium. Methods Mol Biol 845:333–344PubMedGoogle Scholar
  122. Wagener J, Weindl G, de Groot PW, de Boer AD, Kaesler S, Thavaraj S, Bader O, Mailänder-Sanchez D, Borelli C, Weig M, Biedermann T, Naglik JR, Korting HC, Schaller M (2012b) Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PLoS One 7:e50518PubMedGoogle Scholar
  123. Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, Korting HC, Schaller M (2007) Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest 117:3664–3672PubMedGoogle Scholar
  124. Weindl G, Wagener J, Schaller M (2010) Epithelial cells and innate antifungal defense. J Dent Res 89:666–675PubMedGoogle Scholar
  125. Weindl G, Wagener J, Schaller M (2011) Interaction of the mucosal barrier with accessory immune cells during fungal infection. Int J Med Microbiol 301:431–435PubMedGoogle Scholar
  126. Willment JA, Brown GD (2008) C-type lectin receptors in antifungal immunity. Trends Microbiol 16:27–32PubMedGoogle Scholar
  127. Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F, Leonhardt I, Schild L, Seider K, Skibbe M, Slesiona S, Waechtler B, Jacobsen I, Hube B (2009) Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9:688–700PubMedGoogle Scholar
  128. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241–254PubMedGoogle Scholar
  129. Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD, Gurney AL (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275:31335–31339PubMedGoogle Scholar
  130. Yamashiro S, Kamohara H, Wang JM, Yang D, Gong WH, Yoshimura T (2001) Phenotypic and functional change of cytokine-activated neutrophils: inflammatory neutrophils are heterogeneous and enhance adaptive immune responses. J Leukoc Biol 69:698–704PubMedGoogle Scholar
  131. Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L (2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37:2695–2706PubMedGoogle Scholar
  132. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217PubMedGoogle Scholar
  133. Zhou M, Yang B, Ma R, Wu C (2008) Memory Th-17 cells specific for C. albicans are persistent in human peripheral blood. Immunol Lett 118:72–81PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Günther Weindl
    • 1
  • Julian R. Naglik
    • 2
  • David L. Moyes
    • 2
  • Martin Schaller
    • 3
    Email author
  1. 1.Institute of Pharmacy (Pharmacology and Toxicology)Freie Universität BerlinBerlinGermany
  2. 2.Department of Oral Immunology, Clinical and Diagnostic Sciences, King’s College London Dental InstituteKing’s College LondonLondonUK
  3. 3.Department of DermatologyEberhard Karls University TübingenTübingenGermany

Personalised recommendations