Integrating Multiple Viewpoints for Articulated Scene Model Aquisition

  • Leon Ziegler
  • Agnes Swadzba
  • Sven Wachsmuth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7963)


In this paper we present a method to generate an Articulated Scene Model for a system’s current view, which allows to integrate multiple egocentric models previously gathered from different viewpoints. The approach is designed to build up separate representations for the static, movable and dynamic parts of an observed scene. In order to make already gathered information available for subsequent viewpoints of the same location, a merging algorithm is needed that considers view-dependent aspects like occlusion and limitations of the view frustum. We show in our experiments that the proposed algorithm correctly merges multiple scene models and can be applied profitably in an integrated vision system for detecting movable objects on a mobile robot.


Mobile Robot Background Model Merging Algorithm Scene Model Multiple Viewpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beuter, N., Swadzba, A., Kummert, F., Wachsmuth, S.: Using articulated scene models for dynamic 3d scene analysis in vista spaces. 3D Research 1 (September 2010)Google Scholar
  2. 2.
    Burgess, N., Spiers, H.J., Paleologou, E.: Orientational manoeuvres in the dark: dissociating allocentric and egocentric influences on spatial memory. Cognition 94, 149–166 (2004)CrossRefGoogle Scholar
  3. 3.
    Campbell, N.D.F., Vogiatzis, G., Hernández, C., Cipolla, R.: Automatic 3d object segmentation in multiple views using volumetric graph-cuts. Image Vision Comput. 28(1), 14–25 (2010)CrossRefGoogle Scholar
  4. 4.
    Gelfand, N., Guibas, L.J.: Shape segmentation using local slippage analysis. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP 2004, pp. 214–223. ACM, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Hartley, T., Trinkler, I., Burgess, N.: Geometric determinants of human spatial memory. Cognition 94, 39–75 (2004)CrossRefGoogle Scholar
  6. 6.
    Mou, W., McNamara, T.P., Rump, B., Xiao, C.: Roles of Egocentric and Allocentric Spatial Representations in Locomotion and Reorientation. Journal of Experimental Psychology: Learning, Memory, and Cognition 32(6), 1274–1290 (2006)CrossRefGoogle Scholar
  7. 7.
    Nüchter, A., Hertzberg, J.: Towards semantic maps for mobile robots 56, 915–926 (2008)Google Scholar
  8. 8.
    Rensink, R.A.: Change Detection. Annual Review of Psychology 53, 245–277 (2002)CrossRefGoogle Scholar
  9. 9.
    Sanders, B., Nelson, R., Sukthankar, R.: A theory of the quasi-static world. In: Proceedings of the 16th Int. Conf. on Pattern Recognition, vol. 3, pp. 1–6 (2002)Google Scholar
  10. 10.
    Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: 2009 IEEE 12th Int. Conf. on Computer Vision, September 29-October 2, pp. 1219–1225 (2009)Google Scholar
  11. 11.
    Siepmann, F., Ziegler, L., Kortkamp, M., Wachsmuth, S.: Deploying a modeling framework for reusable robot behavior to enable informed strategies for domestic service robots. Robotics and Autonomous Systems (2012)Google Scholar
  12. 12.
    Steder, B., Grisetti, G., Van Loock, M., Burgard, W.: Robust on-line model-based object detection from range images. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2009, pp. 4739–4744 (October 2009)Google Scholar
  13. 13.
    Sturm, J., Konolige, K., Stachniss, C., Burgard, W.: Vision-based detection for learning articulation models of cabinet doors and drawers in household environments. In: 2010 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 362–368 (May 2010)Google Scholar
  14. 14.
    Swadzba, A., Beuter, N., Wachsmuth, S., Kummert, F.: Dynamic 3d scene analysis for acquiring articulated scene models. In: IEEE Int. Conf. on Robotics and Automation. IEEE, Anchorage (2010)Google Scholar
  15. 15.
    Vasudevan, S., Gächter, S., Nguyen, V., Siegwart, R.: Cognitive maps for mobile robots – an object based approach 55, 359–371 (2007)Google Scholar
  16. 16.
    Wang, R.F., Simons, D.J.: Active and passive scene recognition across views. Cognition 70, 191–210 (1999)CrossRefGoogle Scholar
  17. 17.
    Ziegler, L., Siepmann, F., Kortkamp, M., Wachsmuth, S.: Towards an informed search behavior for domestic robots. In: SIMPAR 2010 Workshop on Domestic Service Robots in the Real World (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Leon Ziegler
    • 1
  • Agnes Swadzba
    • 1
  • Sven Wachsmuth
    • 1
    • 2
  1. 1.Applied Informatics, Faculty of TechnologyBielefeld UniversityGermany
  2. 2.Central Lab Facilities, CITECBielefeldGermany

Personalised recommendations