Advertisement

LaserGun: A Tool for Hybrid 3D Reconstruction

  • Marco Fanfani
  • Carlo Colombo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7963)

Abstract

We present a tool for the acquisition of 3D textured models of objects of desktop size using an hybrid computer vision framework. This framework combines active laser-based triangulation with passive motion estimation. The 3D models are obtained by motion-based alignment (with respect to a fixed world frame) of imaged laser profiles backprojected onto time-varying camera frames. Two distinct techniques for estimating camera displacements are described and evaluated. The first is based on a Simultaneous Localization and Mapping (SLAM) approach, while the second exploits a planar pattern in the scene and recovers motion by homography decomposition. Results obtained with a custom laser-camera stereo setup — implemented with off-the-shelf hardware — show that a trade-off exists between the greater operational flexibility of SLAM and the higher model accuracy of the homography-based approach.

Keywords

3D Reconstruction Active Triangulation Motion Estimation SLAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, F., Brown, G.M., Song, M.: Overview of Three-Dimensional Shape Measurement using Optical Methods. Optical Engineering 39, 10–22 (2000)CrossRefGoogle Scholar
  2. 2.
    Bernardini, F., Rushmeier, H.E.: The 3D Model Acquisition Pipeline. Computer Graphics Forum 21, 149–172 (2002)CrossRefGoogle Scholar
  3. 3.
    Rocchini, C., Cignoni, P., Montani, C., Scopigno, R.: A low cost 3D scanner based on structured light. Computer Graphics Forum 20, 299–308 (2001)CrossRefGoogle Scholar
  4. 4.
    Winkelbach, S., Molkenstruck, S., Wahl, F.M.: Low-cost laser range scanner and fast surface registration approach. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 718–728. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Habbecke, M., Kobbelt, L.: Laser brush: a flexible device for 3D reconstruction of indoor scenes. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 231–239. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Colombo, C., Comanducci, D., Del Bimbo, A.: Shape reconstruction and texture sampling by active rectification and virtual view synthesis. Computer Vision and Image Understanding 115, 161–176 (2011)CrossRefGoogle Scholar
  7. 7.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a Day. In: Proceedings of the International Conference on Computer Vision, ICCV 2009, Kyoto, Japan (2009)Google Scholar
  8. 8.
    Farenzena, A.M., Fusiello, A., Gherardi, R.: Structure-and-Motion Pipeline on a Hierarchical Cluster Tree. In: Proceedings of the IEEE International Workshop on 3-D Digital Imaging and Modeling, Kyoto, Japan (2009)Google Scholar
  9. 9.
    Vogiatzis, G., Hernàndez, C.: Video-based, real-time multi view stereo. Image and Vision Computing (2011)Google Scholar
  10. 10.
    Wang, L., Liao, M., Gong, M., Yang, R., Nistèr, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: 3rd Int. Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 798–805. Springer (2006)Google Scholar
  11. 11.
    Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape from shading: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(8), 690–706 (1999)CrossRefGoogle Scholar
  12. 12.
    Bouguet, J.Y., Perona, P.: 3D Photography Using Shadows in Dual-Space Geometry. International Journal of Computer Vision (IJCV) 35, 129–149 (1999)CrossRefGoogle Scholar
  13. 13.
    Hernàndez, C., Vogiatzis, G., Cipolla, R.: Multi-view Photometric Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2008)Google Scholar
  14. 14.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)CrossRefGoogle Scholar
  15. 15.
    Bradski, G.R.: Computer Vision Face Tracking for Use in a Perceptual User Interface. Intel Technology Journal (1998)Google Scholar
  16. 16.
    Fisher, R.B., Naidu, D.K.: A Comparison of Algorithms for Subpixel Peak Detection. In: Image Technology, Advances in Image Processing, Multimedia and Machine Vision, pp. 385–404. Springer (1996)Google Scholar
  17. 17.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007), Nara, Japan (November 2007)Google Scholar
  18. 18.
    Mei, C., Sibley, G., Cummins, M., Newman, P., Reid, I.: RSLAM: A system for large-scale mapping in constant-time using stereo. International Journal of Computer Vision, 1–17 (2010); Special issue of BMVCGoogle Scholar
  19. 19.
    Shi, J., Tomasi, C.: Good features to track. Technical report, Ithaca, NY, USA (1993)Google Scholar
  20. 20.
    Bouguet, J.Y.: Pyramidal implementation of the Lucas-Kanade feature tracker description of the algorithm (2000)Google Scholar
  21. 21.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518Google Scholar
  22. 22.
    Lourakis, M.I.A., Argyros, A.A.: SBA: a software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software, 1–30 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Fanfani
    • 1
  • Carlo Colombo
    • 1
  1. 1.Computational Vision Group, Dip. di Ingegneria dell’InformazioneUniversitá di FirenzeFirenzeItaly

Personalised recommendations