Advertisement

Robust Multi-hypothesis 3D Object Pose Tracking

  • Georgios Chliveros
  • Maria Pateraki
  • Panos Trahanias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7963)

Abstract

This paper tackles the problem of 3D object pose tracking from monocular cameras. Data association is performed via a variant of the Iterative Closest Point algorithm, thus making it robust to noise and other artifacts. We re-initialise the hypothesis space based on the resulting re-projection error between hypothesised models and observed image objects. This is performed through a non-linear minimisation step after correspondences are found. The use of multi-hypotheses and correspondences refinement, lead to a robust framework. Experimental results with benchmark image sequences indicate the effectiveness of our framework.

Keywords

Robot Vision Object Tracking Relative Pose Estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4), 1–46 (2006)CrossRefGoogle Scholar
  2. 2.
    Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects: a survey. In: Foundations and Trends in Computer Graphics and Vision (2005)Google Scholar
  3. 3.
    Harris, C., Stennet, C.: RAPiD – A video-rate object tracker. In: British Machine Vision Conference, pp. 73–77 (1990)Google Scholar
  4. 4.
    Koller, D., Daniilidis, K., Nagel, H.: Model-based object tracking in monocular image sequences of road traffic scenes. International Journal of Computer Vision 10, 257–281 (1993)CrossRefGoogle Scholar
  5. 5.
    Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 932–946 (2002)CrossRefGoogle Scholar
  6. 6.
    Fitzgibbon, A.: Robust registration of 2D and 3D point sets. Image and Vision Computing 21(13), 1145–1153 (2003)CrossRefGoogle Scholar
  7. 7.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(3), 266–280 (2000)CrossRefGoogle Scholar
  8. 8.
    Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3D tracking using online and offline information. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1385–1391 (2004)CrossRefGoogle Scholar
  9. 9.
    Azad, P., Münch, D., Asfour, T., Dillmann, R.: 6-DoF model-based tracking of arbitrarily shaped 3D objects. In: IEEE Int. Conf. on Robotics and Automation (2011)Google Scholar
  10. 10.
    Puppili, M., Calway, A.: Real time camera tracking using known 3D models and a particle filter. In: IEEE Int. Conf. on Pattern Recognition (2006)Google Scholar
  11. 11.
    Choi, C., Christensen, H.I.: Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features. The International Journal of Robotics Research 31(4), 498–519 (2012)CrossRefGoogle Scholar
  12. 12.
    Doucet, A., Godsill, S., Andrieu, C.: On Sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)CrossRefGoogle Scholar
  13. 13.
    Argyros, A.A., Lourakis, M.I.A.: Real-time tracking of multiple skin-colored objects with a possibly moving camera. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 368–379. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Baltzakis, H., Argyros, A.A.: Propagation of pixel hypotheses for multiple objects tracking. In: Bebis, G., et al. (eds.) ISVC 2009, Part II. LNCS, vol. 5876, pp. 140–149. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Liao, P.S., Chen, T.S., Chung, P.C.: A fast algorithm for multi-level thresholding. Journal of Information Science and Engineering 17, 713–727 (2001)Google Scholar
  16. 16.
    Rousseeuw, P.J.: Least median of squares regression. Journal of the American Statistical Association 79(388), 871–880 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image and Vision Computing 23, 299–309 (2005)CrossRefGoogle Scholar
  18. 18.
    Lourakis, M.I.A.: Sparse non-linear least squares optimization for geometric vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 43–56. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Georgios Chliveros
    • 1
  • Maria Pateraki
    • 1
  • Panos Trahanias
    • 1
    • 2
  1. 1.Foundation for Research and Technology Hellas, Institute of Computer ScienceHeraklionGreece
  2. 2.Dept. of Computer ScienceUniversity of CreteHeraklionGreece

Personalised recommendations