High Frame Rate Egomotion Estimation

  • Natesh Srinivasan
  • Richard Roberts
  • Frank Dellaert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7963)


In this paper, we present an algorithm for doing high frame rate egomotion estimation. We achieve this by using a basis flow model, along with a novel inference algorithm, that uses spatio-temporal gradients, foregoing the computation of the slow and noisy optical flow. The inherent linearity in our model allows us to achieve fine grained parallelism. We demonstrate this by running our algorithm on GPUs to achieve egomotion estimation at 120Hz.

Image motion is tightly coupled with the camera egomotion and depth of the scene. Hence, we validate our approach by using the egomotion estimate to compute the depth of a static scene. Our applications are aimed towards autonomous navigation scenarios where, it is required to have a quick estimate of the state of the vehicle, while freeing up computation time for higher level vision tasks.


Graphic Processing Unit Mental Rotation Image Gradient High Frame Rate Translational Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An Improved Algorithm for TV-L1 Optical Flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Arkin, R.C.: The role of mental rotations in primate-inspired robot navigation. Cognitive Processing 13, 83–87 (2012)CrossRefGoogle Scholar
  3. 3.
    Beall, C., Nguyen, T.H.D., Ok, C., Dellaert, F.: Attitude heading reference system with rotation-aiding visual landmarks (2012)Google Scholar
  4. 4.
    Bruss, A.R., Horn, B.K.P.: Passive navigation. Computer Vision, Graphics, and Image Processing 21, 3–20 (1983)CrossRefGoogle Scholar
  5. 5.
    Florian, R., Heiko, N.: A review and evaluation of methods estimating ego-motion. Comput. Vis. Image Underst. 116(5), 606–633 (2012)CrossRefGoogle Scholar
  6. 6.
    Handa, A., Newcombe, R.A., Angeli, A., Davison, A.J.: Real-time camera tracking: when is high frame-rate best? In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 222–235. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Heeger, D., Jepson, A.: Subspace methods for recovering rigid motion I: Algorithm and implementation. International Journal of Computer Vision 7(2), 95–117 (1992)CrossRefGoogle Scholar
  8. 8.
    Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17(1-3), 185–203 (1981)CrossRefGoogle Scholar
  9. 9.
    Irani, M., Anandan, P.: All about direct methods (1999)Google Scholar
  10. 10.
    Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)CrossRefGoogle Scholar
  11. 11.
    Longuet-Higgins, H.C., Prazdny, K.: The Interpretation of a Moving Retinal Image. Proceedings of the Royal Society of London. Series B, Biological Sciences (1934-1990) 208(1173), 385–397 (1980)Google Scholar
  12. 12.
    Matthies, L., Szeliski, R., Kanade, T.: Kalman filter-based algorithms for estimating depth from image sequences. International Journal of Computer Vision 3, 209–236 (1989)CrossRefGoogle Scholar
  13. 13.
    Rieger, J.H., Lawton, D.T.: Sensor motion and relative depth from difference fields of optic flows. In: IJCAI, pp. 1027–1031 (1983)Google Scholar
  14. 14.
    Roberts, R., Potthast, C., Dellaert, F.: Learning general optical flow subspaces for egomotion estimation and detection of motion anomalies. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Natesh Srinivasan
    • 1
  • Richard Roberts
    • 1
  • Frank Dellaert
    • 1
  1. 1.Georgia Institute of TechnologyUSA

Personalised recommendations