Advertisement

Pattern-of-Zeros Approach to Fractional Quantum Hall States and a Classification of Symmetric Polynomial of Infinite Variables

  • Xiao-Gang Wen
  • Zhenghan Wang
Part of the Mathematical Lectures from Peking University book series (MLPKU)

Abstract

Some purely chiral fractional quantum Hall states are described by symmetric or anti-symmetric polynomials of infinite variables. In this article, we review a systematic construction and classification of those fractional quantum Hall states and the corresponding polynomials of infinite variables, using the pattern-of-zeros approach. We discuss how to use patterns of zeros to label different fractional quantum Hall states and the corresponding polynomials. We also discuss how to calculate various universal properties (i.e. the quantum topological invariants) from the pattern of zeros.

Notes

Acknowledgements

This research is supported by NSF Grant No. DMR-1005541 and NSFC 11074140.

References

  1. 1.
    Tsui, D.C., Stormer, H.L., Gossard, A.C.: Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982) CrossRefGoogle Scholar
  2. 2.
    Laughlin, R.B.: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983) CrossRefGoogle Scholar
  3. 3.
    Chen, X., Gu, Z.-C., Wen, X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010). arXiv:1004.3835 CrossRefGoogle Scholar
  4. 4.
    Landau, L.D.: Theory of phase transformations I. Phys. Z. Sowjetunion 11, 26 (1937) MATHGoogle Scholar
  5. 5.
    Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Èksp. Teor. Fiz. 20, 1064 (1950) Google Scholar
  6. 6.
    Landau, L.D., Lifschitz, E.M.: Statistical Physics—Course of Theoretical Physics, vol. 5. Pergamon, London (1958) Google Scholar
  7. 7.
    Wen, X.-G.: Vacuum degeneracy of chiral spin state in compactified spaces. Phys. Rev. B 40, 7387 (1989) CrossRefGoogle Scholar
  8. 8.
    Wen, X.-G.: Topological orders in rigid states. Int. J. Mod. Phys. B 4, 239 (1990) CrossRefGoogle Scholar
  9. 9.
    Wen, X.-G., Niu, Q.: Ground state degeneracy of the FQH states in presence of random potentials and on high genus Riemann surfaces. Phys. Rev. B 41, 9377 (1990) CrossRefGoogle Scholar
  10. 10.
    Wen, X.-G.: Topological orders and edge excitations in FQH states. Adv. Phys. 44, 405 (1995) CrossRefGoogle Scholar
  11. 11.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zhang, S.C., Hansson, T.H., Kivelson, S.: Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82 (1989) CrossRefGoogle Scholar
  13. 13.
    Frohlich, J., King, C.: The Chern-Simons theory and knot polynomials. Commun. Math. Phys. 126, 167 (1989) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Blok, B., Wen, X.-G.: Effective theories of fractional quantum Hall effect at generic filling fractions. Phys. Rev. B 42, 8133 (1990) CrossRefGoogle Scholar
  15. 15.
    Blok, B., Wen, X.-G.: Effective theories of fractional quantum Hall effect: hierarchical construction. Phys. Rev. B 42, 8145 (1990) CrossRefGoogle Scholar
  16. 16.
    Read, N.: Excitation structure of the hierarchy scheme in the fractional quantum Hall effect. Phys. Rev. Lett. 65, 1502 (1990) CrossRefGoogle Scholar
  17. 17.
    Frohlich, J., Kerler, T.: Universality in quantum Hall systems. Nucl. Phys. B 354, 369 (1991) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wen, X.-G., Zee, A.: A classification and matrix formulation of the Abelian FQH states. Phys. Rev. B 46, 2290 (1992) CrossRefGoogle Scholar
  19. 19.
    Frohlich, J., Studer, U.M.: Gauge invariance and current algebra in nonrelativistic manybody theory. Rev. Mod. Phys. 65, 733 (1993) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Frohlich, J., Zee, A.: Large scale physics of the quantum Hall fluid. Nucl. Phys. B 364, 517 (1991) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362 (1991) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wen, X.-G.: Non-Abelian statistics in the FQH states. Phys. Rev. Lett. 66, 802 (1991) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Blok, B., Wen, X.-G.: Many-body systems with non-Abelian statistics. Nucl. Phys. B 374, 615 (1992) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wen, X.-G., Wu, Y.-S.: Chiral operator product algebra hidden in certain FQH states. Nucl. Phys. B 419, 455 (1994). cond-mat/9310027 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wen, X.-G., Wang, Z.: Classification of symmetric polynomials of infinite variables: construction of Abelian and non-Abelian quantum Hall states. Phys. Rev. B 77, 235108 (2008). arXiv:0801.3291 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wen, X.-G., Wang, Z.: Topological properties of Abelian and non-Abelian quantum Hall states from the pattern of zeros. Phys. Rev. B 78, 155109 (2008). arXiv:0803.1016 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Barkeshli, M., Wen, X.-G.: Structure of quasiparticles and their fusion algebra in fractional quantum Hall states. Phys. Rev. B 79, 195132 (2009). arXiv:0807.2789 CrossRefGoogle Scholar
  28. 28.
    Barkeshli, M., Wen, X.-G.: Classification of Abelian and non-Abelian multilayer fractional quantum Hall states through the pattern of zeros. Phys. Rev. B 82, 245301 (2010). arXiv:0906.0337 CrossRefGoogle Scholar
  29. 29.
    Seidel, A., Lee, D.-H.: Abelian and non-Abelian Hall liquids and charge density wave: quantum number fractionalization in one and two dimensions. Phys. Rev. Lett. 97, 056804 (2006) CrossRefGoogle Scholar
  30. 30.
    Bergholtz, E.J., Kailasvuori, J., Wikberg, E., Hansson, T.H., Karlhede, A.: The Pfaffian quantum Hall state made simple–multiple vacua and domain walls on a thin torus. Phys. Rev. B 74, 081308 (2006) CrossRefGoogle Scholar
  31. 31.
    Bernevig, B.A., Haldane, F.D.M.: Generalized clustering conditions of Jack polynomials at negative Jack parameter α. Phys. Rev. B 77, 184502 (2008). arXiv:0711.3062 CrossRefGoogle Scholar
  32. 32.
    Seidel, A.: Pfaffian statistics through adiabatic transport in the 1D coherent state. Phys. Rev. Lett. 101, 196802 (2008). arXiv:0804.4691 CrossRefGoogle Scholar
  33. 33.
    Seidel, A.: S-duality constraints on 1D patterns associated with fractional quantum Hall states. Phys. Rev. Lett. 105, 026802 (2010). arXiv:1002.2647 CrossRefGoogle Scholar
  34. 34.
    Flavin, J., Seidel, A.: Abelian and non-Abelian statistics in the coherent state representation. Phys. Rev. X 1, 021015 (2011). arXiv:1108.2734 CrossRefGoogle Scholar
  35. 35.
    Lu, Y.-M., Wen, X.-G., Wang, Z., Wang, Z.: Non-Abelian quantum Hall states and their quasiparticles: from the pattern of zeros to vertex algebra. Phys. Rev. B 81, 115124 (2010). arXiv:0910.3988 CrossRefGoogle Scholar
  36. 36.
    Greiter, M., Wen, X.-G., Wilczek, F.: Pairing in the ν=1/2 FQH state. Phys. Rev. Lett. 66, 3205 (1991) CrossRefGoogle Scholar
  37. 37.
    Greiter, M., Wen, X.-G., Wilczek, F.: Paired Hall states. Nucl. Phys. B 374, 567 (1992) MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Leinaas, J.M., Myrheim, J.: On the theory of identical particles. Nuovo Cimento B 37B, 1 (1977) CrossRefGoogle Scholar
  39. 39.
    Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957 (1982) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Halperin, B.I.: Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984) CrossRefGoogle Scholar
  41. 41.
    Arovas, D., Schrieffer, J.R., Wilczek, F.: Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984) CrossRefGoogle Scholar
  42. 42.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45 (1984) CrossRefMATHGoogle Scholar
  43. 43.
    Nayak, C., Wilczek, F.: 2n Quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states Nucl. Phys. B 479, 529 (1996) MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Wen, X.-G.: Theory of the edge excitations in FQH effects. Int. J. Mod. Phys. B 6, 1711 (1992) CrossRefGoogle Scholar
  45. 45.
    Wen, X.-G.: Topological order and edge structure of ν=1/2 quantum Hall state. Phys. Rev. Lett. 70, 355 (1993) CrossRefGoogle Scholar
  46. 46.
    Wen, X.-G.: Chiral Luttinger liquid and the edge excitations in the FQH states. Phys. Rev. B 41, 12838 (1990) CrossRefGoogle Scholar
  47. 47.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs. Oxford University Press, New York (1995) MATHGoogle Scholar
  48. 48.
    Hazewinkel, M.: Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. Acta Appl. Math. 75, 55 (2003). arXiv:math/0410468 MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Ardonne, E., Bergholtz, E.J., Kailasvuori, J., Wikberg, E.: Degeneracy of non-Abelian quantum Hall states on the torus: domain walls and conformal field theory. J. Stat. Mech. Theory Exp. 2008, P04016 (2008) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Noyvert, B.: Algebraic approach to parafermionic conformal field theories. J. High Energy Phys. 2, 74 (2007) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiao-Gang Wen
    • 1
    • 2
  • Zhenghan Wang
    • 3
  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institute for Advanced StudyTsinghua UniversityBeijingP.R. China
  3. 3.Microsoft Station QUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations