Advertisement

A New Behavioral Measure of Cognitive Flexibility

  • Christian A. Gonzalez
  • Ivonne J. Figueroa
  • Brooke G. Bellows
  • Dustin Rhodes
  • Robert J. Youmans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8019)

Abstract

Individual differences in cognitive flexibility may underlie a variety of different user behaviors, but a lack of effective measurement tools has limited the predictive and descriptive potential of cognitive flexibility in human-computer interaction applications. This study presents a new computerized measure of cognitive flexibility, and then provides evidence for convergent validity. Our findings indicate moderate to strong correlations with the Trail Making Task, and in particular, those aspects of the task most closely associated with cognitive flexibility. Results of this study provide support for the validity of a new measure of cognitive flexibility. We conclude by discussing the measure’s potential applicability in the field of HCI.

Keywords

cognitive flexibility individual differences user modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harrison, A.W., Rainer Jr, R.K.: The influence of individual differences on skill in end-user computing. Journal of Management Information Systems, 93–111 (1992)Google Scholar
  2. 2.
    Hong, W., Thong, J.Y.L., Wong, W.M., Tam, K.Y.: Determinants of user acceptance of digital libraries: an empirical examination of individual differences and system characteristics. Journal of Management Information Systems 18, 97–124 (2002)Google Scholar
  3. 3.
    Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user performance time with interactive systems. Commun. ACM. 23, 396–410 (1980)CrossRefGoogle Scholar
  4. 4.
    Gray, W.D., John, B.E., Atwood, M.E.: Project Ernestine: Validating a GOMS Analysis for Predicting and Explaining Real-World Task Performance. Human-Computer Interaction 8, 237–309 (1993)CrossRefGoogle Scholar
  5. 5.
    Olson, J.R., Olson, G.M.: The growth of cognitive modeling in human-computer interaction since GOMS. Human-Computer Interaction 5, 221–265 (1990)CrossRefGoogle Scholar
  6. 6.
    Scott, W.A.: Cognitive complexity and cognitive flexibility. Sociometry, 405–414 (1962)Google Scholar
  7. 7.
    Allison, R.S.: Perseveration as a sign of diffuse and focal brain damage. I. Br. Med. J. 2, 1027–1032, contd (1966)CrossRefGoogle Scholar
  8. 8.
    Müller, J., Dreisbach, G., Brocke, B., Lesch, K.P., Strobel, A., Goschke, T.: Dopamine and cognitive control: The influence of spontaneous eyeblink rate, DRD4 exon III polymorphism and gender on flexibility in set-shifting. Brain Research 1131, 155–162 (2007)CrossRefGoogle Scholar
  9. 9.
    Eslinger, P.J., Grattan, L.M.: Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia 31, 17–28 (1993)CrossRefGoogle Scholar
  10. 10.
    Youmans, R.J., Figueroa, I.J., Kramarova, O.: Reactive Task-Set Switching Ability, Not Working Memory Capacity, Predicts Change Blindness Sensitivity. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 55, 914–918 (2011)CrossRefGoogle Scholar
  11. 11.
    Figueroa, I.J., Youmans, R.J.: Individual differences in cognitive flexibility predict poetry originality. In: Proceedings of the 15th International Conference on Human-Computer Interaction, Las Vegas, Nevada (2013)Google Scholar
  12. 12.
    Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., Shneiderman, B.: Determining causes and severity of end-user frustration. International Journal of Human-Computer Interaction 17, 333–356 (2004)CrossRefGoogle Scholar
  13. 13.
    Beversdorf, D.Q., Hughes, J.D., Steinberg, B.A., Lewis, L.D., Heilman, K.M.: Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport 10, 2763 (1999)CrossRefGoogle Scholar
  14. 14.
    Baas, M., De Dreu, C.K., Nijstad, B.A.: A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin 134, 779 (2008)CrossRefGoogle Scholar
  15. 15.
    Subramaniam, K., Kounios, J., Parrish, T.B., Jung-Beeman, M.: A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience 21, 415–432 (2009)CrossRefGoogle Scholar
  16. 16.
    Reitan, R.M.: The relation of the Trail Making Test to organic brain damage. Journal of Consulting Psychology 19, 393–394 (1955)CrossRefGoogle Scholar
  17. 17.
    Reitan, R.M.: Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills 8, 271–276 (1958)Google Scholar
  18. 18.
    Sanchez-Cubillo, I., Perianez, J.A., Adrover-Roig, D., Rodriguez-Sanchez, J.M., Rios-Lago, M., Tirapu, J., Barcelo, F.: Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society 15, 438 (2009)CrossRefGoogle Scholar
  19. 19.
    Barceló, F., Knight, R.T.: Both random and perseverative errors underlie WCST deficits in prefrontal patients. Neuropsychologia 40, 349–356 (2002)CrossRefGoogle Scholar
  20. 20.
    Turner, M.L., Engle, R.W.: Is working memory capacity task dependent? Journal of Memory and Language. Journal of Memory and Language 28, 127–154 (1989)CrossRefGoogle Scholar
  21. 21.
    Unsworth, N., Heitz, R.P., Schrock, J.C., Engle, R.W.: An automated version of the operation span task. Behavior Research Methods 37, 498–505 (2005)CrossRefGoogle Scholar
  22. 22.
    Zander, T.O., Kothe, C., Jatzev, S., Gaertner, M.: Enhancing human-computer interaction with input from active and passive brain-computer interfaces. Brain-Computer Interfaces, 181–199 (2010)Google Scholar
  23. 23.
    Wong, A.W.K., Chan, C.C.H., Li-Tsang, C.W.P., Lam, C.S.: Competence of people with intellectual disabilities on using human–computer interface. Research in Developmental Disabilities 30, 107 (2009)CrossRefGoogle Scholar
  24. 24.
    Martin, M.M., Rubin, R.B.: A new measure of cognitive flexibility. Psychological Reports 76, 623–626 (1995)CrossRefGoogle Scholar
  25. 25.
    Martin, M.M., Anderson, C.M.: The cognitive flexibility scale: Three validity studies. Communication Reports 11, 1–9 (1998)CrossRefGoogle Scholar
  26. 26.
    Dennis, J.P., Vander Wal, J.S.: The cognitive flexibility inventory: Instrument development and estimates of reliability and validity. Cognitive Therapy and Research 34, 241–253 (2010)CrossRefGoogle Scholar
  27. 27.
    Figueroa, I.J., Youmans, R.J.: Developing an Easy-to-Administer, Objective, and Valid Assessment of Cognitive Flexibility. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 944–948 (2011)Google Scholar
  28. 28.
    Gonzalez, C., Pratt, S.M., Benson, W., Figueroa, I.J., Rhodes, D., Youmans, R.J.: Creating a Computerized Assessment of Cognitive Flexibility with a User-Friendly Participant and Experimenter Interface. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1942–1946 (2012)Google Scholar
  29. 29.
    Monsell, S.: Task switching. Trends in Cognitive Sciences 7, 134–140 (2003)CrossRefGoogle Scholar
  30. 30.
    Rogers, R.D., Monsell, S.: Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General 124, 207 (1995)CrossRefGoogle Scholar
  31. 31.
    Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A.M., Koch, I.: Control and interference in task switching—A review. Psychological Bulletin 136, 849 (2010)CrossRefGoogle Scholar
  32. 32.
    Crowe, S.F.: The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. J. Clin. Psychol. 54, 585–591 (1998)CrossRefGoogle Scholar
  33. 33.
    Gaudino, E.A., Geisler, M.W., Squires, N.K.: Construct validity in the Trail Making Test: what makes Part B harder? Journal of Clinical and Experimental Neuropsychology 17, 529–535 (1995)CrossRefGoogle Scholar
  34. 34.
    Helander, M.G., Landauer, T.K., Prabhu, P.V.: Handbook of human-computer interaction. North Holland (1997)Google Scholar
  35. 35.
    Aykin, N.M., Aykin, T.: Individual differences in human-computer interaction. Computers & Industrial Engineering 20, 373–379 (1991)CrossRefGoogle Scholar
  36. 36.
    Card, S.K., Moran, T.P., Newell, A.: The psychology of human-computer interaction. CRC (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian A. Gonzalez
    • 1
  • Ivonne J. Figueroa
    • 1
  • Brooke G. Bellows
    • 1
  • Dustin Rhodes
    • 2
  • Robert J. Youmans
    • 1
  1. 1.Department of PsychologyGeorge Mason UniversityFairfaxUSA
  2. 2.University of CaliforniaSanta CruzUSA

Personalised recommendations