Towards a Categorical Theory of Creativity for Music, Discourse, and Cognition
Conference paper
Abstract
This article presents a first attempt at establishing a category-theoretical model of creative processes. The model, which is applied to musical creativity, discourse theory, and cognition, suggests the relevance of the notion of “colimit” as a unifying construction in the three domains as well as the central role played by the Yoneda Lemma in the categorical formalization of creative processes.
Keywords
Creative Process Categorical Theory Full Subcategory Common Subspace Conceptual Blending
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Acotto, E., Andreatta, M.: Between Mind and Mathematics. Different Kinds of Computational Representations of Music. Mathematics and Social Sciences 199(50e année), 9–26 (2012)Google Scholar
- 2.Bastiani(-Ehresmann), A., Ehresmann, C.: Categories of sketched structures, Cahiers Top. et Géom. Dif. XIII-2 (1972), http://archive.numdam.org
- 3.Boden, M.A.: Conceptual Spaces. In: Meusburger, P., et al. (eds.) Milieus of Creativity. Springer (2009)Google Scholar
- 4.Cope, D.: Computer Models of Musical Creativity. MIT Press, Cambridge (2005)Google Scholar
- 5.Edelman, G.M.: The remembered Present. Basic Books, New York (1989)Google Scholar
- 6.Ehresmann, A., Vanbremeersch, J.-P.: Semantics and Communication for Memory Evolutive Systems. In: Lasker (ed.) Proc. 6th Intern. Conf. on Systems Research. International Institute for Advanced Studies in Systems Research and Cybernetics, University of Windsor (1992), http://ehres.pagesperso-orange.fr
- 7.Ehresmann, A., Vanbremeersch, J.-P.: Memory Evolutive Systems: Hierarchy, Emergence, Cognition. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
- 8.Fauconnier, G., Turner, M.: The way we think. Basic Books (2002) (reprint)Google Scholar
- 9.Forth, J., Wiggins, G.A., McLean, A.: Unifying Conceptual Spaces: Concept Formation in Musical Creative Systems. Minds & Machines 20, 503–532 (2010)CrossRefGoogle Scholar
- 10.Gärdenfors, P.: Conceptual Spaces: On the Geometry of Thought. MIT Press, Cambridge (2000)Google Scholar
- 11.Goguen, J.: An Introduction to Algebraic Semiotics, with Application to User Interface Design. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 242–291. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 12.Goguen, J., Harrell, D.F.: Style: A Computational and Conceptual Blending-Based Approach. In: Dubnov, S., et al. (eds.) The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning. Springer (2009)Google Scholar
- 13.Guitart, R.: L’idée de Logique Spéculaire. Journées Catégories, Algèbres, Esquisses, Néo-esquisses, Caen, Septembre 27-30, p. 6 (1994)Google Scholar
- 14.Guitart, R.: Cohomological Emergence of Sense in Discourses (As Living Systems Following Ehresmann and Vanbremeersch). Axiomathes 19(3), 245–270 (2009)CrossRefGoogle Scholar
- 15.Guitart, R.: A Hexagonal Framework of the Field \(\mathbb{F}_4\) and the Associated Borromean Logic. Log. Univers. 6, 119–147 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the Structural Core of Human Cerebral Cortex. PLoS Biology 6(7), 1479–1493 (2008)CrossRefGoogle Scholar
- 17.Halford, G.S., Wilson, W.H.: A Category-Theory approach to cognitive development. Cognitive Psychology 12, 356–411 (1980)CrossRefGoogle Scholar
- 18.Hofstadter, D.: Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thoughts. Basic Books (1995)Google Scholar
- 19.Kan, D.M.: Adjoint Functors. Transactions of the American Mathematical Society 87, 294–329 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Lawvere, W.F.: Functorial Semantics of Algebraic Theories. Ph.D. Thesis, Columbia University (1963)Google Scholar
- 21.Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971)zbMATHCrossRefGoogle Scholar
- 22.Mazzola, G., et al.: The Topos of Music—Geometric Logic of Concepts, Theory, and Performance. Birkhäuser, Basel (2002)zbMATHGoogle Scholar
- 23.Mazzola, G., Park, J., Thalmann, F.: Musical Creativity, Heidelberg. Springer Series Computational Music Science (2011)Google Scholar
- 24.Mazzola, G.: Singular Homology on Hypergestures. Journal of Mathematics and Music 6(1), 49–60 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Peirce, C.S.: Collected Papers, vol. I-VI (1931-1935), par Hartshorne, C., Weiss, P.: vol. VII-VIII (1958), par Burks, W.: Harvard University Press. HarvardGoogle Scholar
- 26.Pereira, F.C.: Creativity and Artificial Intelligence - A Conceptual Blending Approach (2007)Google Scholar
- 27.Phillips, S., Wilson, W.H.: Categorical Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition. PLoS Computational Biology 6(7), 1–14 (2010)MathSciNetCrossRefGoogle Scholar
- 28.Post, E.: Introduction to a General Theory of Elementary Propositions. American Journal of Mathematics 43, 163–185 (1921)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Shannon, C., Weaver, W.: The Mathematical Theory of Communication (1949)Google Scholar
- 30.Spanier, E.: Algebraic Topology. McGraw Hill, New York (1966)zbMATHGoogle Scholar
- 31.Uhde, J.: Beethovens Klaviermusik III. Reclam, Stuttgart (1974)Google Scholar
- 32.Zbikowski, L.M.: Conceptualizing Music: Cognitive Structures, Theory, and Analysis. Oxford University Press (2002)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2013