Advertisement

Abstract

The present paper is concerned with the existence, meaning and use of the phases of the (complex) Fourier coefficients of pc-sets, viewed as maps from ℤ c to Open image in new window . It explores a particular cross-section of the most general torus of phases, representing pc-sets by the phases of the third and fifth coefficients. On this 2D torus, triads take on the well-known configuration of the Tonnetz. Some other (sequences of) chords are viewed in this space as examples of its musical relevance. The end of the paper uses the model as a convenient universe for drawing gestures – continuous paths between pc-sets.

Keywords

DFT Fourier scales triads torus phase Tonnetz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quinn, I.: A Unified Theory of Chord Quality in Equal Temperaments. Ph.D. dissertation, Eastman School of Music (2004)Google Scholar
  2. 2.
    Quinn, I.: General Equal Tempered Harmony. Journal of Music Theory 44(2)-45(1) (2006-2007)Google Scholar
  3. 3.
    Amiot, E.: David Lewin and Maximally Even Sets. Journal of Mathematics and Music 1(3), 157–172 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Tymoczko, D.: Three Conceptions of Musical Distance. In: Chew, E., Childs, A., Chuan, C.-H. (eds.) MCM 2009. CCIS, vol. 38, pp. 258–272. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Callender, C.: Continuous Harmonic Spaces. Journal of Music Theory 51(2), 277–332 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hoffman, J.: On Pitch-Class Set Cartography Relations between Voice-Leading Spaces and Fourier Spaces. Journal of Music Theory 52(2) (2008)Google Scholar
  7. 7.
    Krumhansl, C.: Cognitive Foundations of Musical Pitch. Oxford University Press, New York (1990)Google Scholar
  8. 8.
    Tymoczko, D.: Geometrical Methods in Recent Music Theory. Music Theory Online 16(1) (2010), http://www.mtosmt.org/issues/mto.10.16.1/mto.10.16.1.tymoczko.html
  9. 9.
    Tymoczko, D.: The Geometry of Music. Oxford University Press, New York (2011)Google Scholar
  10. 10.
    Tymoczko, D.: Set-Class Similarity, Voice Leading, and the Fourier Transform. Journal of Music Theory 52(2), 251–272 (2008)CrossRefGoogle Scholar
  11. 11.
    Mazzola, G., Andreatta, M.: Diagrams, Gestures and Formulae in Music. Journal of Mathematics and Music 1(1), 23–46 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lewin, D.: Generalized Musical Intervals and Transformations. Yale University Press, New Haven (1987)Google Scholar
  13. 13.
    Peck, R.W.: N th Roots of Pitch-Class Inversion. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726, pp. 196–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Mandereau, J., Ghisi, D., Amiot, E., Andreatta, M., Agon, C.: Discrete Phase Retrieval in Musical Structures. Journal of Mathematics and Music 5(2), 83–98 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Douthett, J., Steinbach, P.: Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition. Journal of Music Theory 42(2), 241–263 (1998)CrossRefGoogle Scholar
  16. 16.
    Plotkin, R.: Cardinality Transformations in Diatonic Space. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726, pp. 207–219. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Amiot, E., Sethares, B.: An Algebra for Periodic Rhythms and Scales. Journal of Mathematics and Music 5(3), 149–169 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Baroin, G.: The Planet-4D Model: An Original Hypersymmetric Music Space Based on Graph Theory. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726, pp. 326–329. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Carlé, M., Hahn, S., Matern, M., Noll, T.: Presentation of Fourier Scratching at MCM 2009, New Haven (2009), http://www.supercollider2010.de/images/papers/fourier-scratching.pdf
  20. 20.
    Milne, A.J., Carlé, M., Sethares, W.A., Noll, T., Holland, S.: Scratching the Scale Labyrinth. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 180–195. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Callender, C., Quinn, I., Tymoczko, D.: Generalized Voice Leading Spaces. Science 320, 346–348 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emmanuel Amiot
    • 1
  1. 1.Classes Préparatoire aux Grandes EcolesPerpignanFrance

Personalised recommendations