A Mobile Brain-Computer Interface for Freely Moving Humans

  • Yuan-Pin Lin
  • Yijun Wang
  • Chun-Shu Wei
  • Tzyy-Ping Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8008)

Abstract

Recent advances in mobile electroencephalogram (EEG) systems featuring dry electrodes and wireless telemetry have promoted the applications of brain-computer interfaces (BCIs) in our daily life. In the field of neuroscience, understanding the underlying neural mechanisms of unconstrained human behaviors, i.e. freely moving humans, is accordingly in high demand. The empirical results of this study demonstrated the feasibility of using a mobile BCI system to detect steady-state visual-evoked potential (SSVEP) of the participants during natural human walking. This study considerably facilitates the process of bridging laboratory-oriented BCI demonstrations into mobile EEG-based systems for real-life environments.

Keywords

EEG BCI SSVEP moving humans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chi, Y.M., Wang, Y.T., Wang, Y., Maier, C., Jung, T.P., Cauwenberghs, G.: Dry and Noncontact EEG Sensors for Mobile Brain-Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 20, 228–235 (2012)CrossRefGoogle Scholar
  2. 2.
    Wang, Y.T., Wang, Y., Jung, T.P.: A Cell-Phone-Based Brain-Computer Interface for Communication in Daily Life. Journal of Neural Engineering 8, 025018 (2011)Google Scholar
  3. 3.
    Wang, Y., Gao, X., Hong, B., Jia, C., Gao, S.: Brain-Computer Interfaces Based on Visual Evoked Potentials: Feasibility of Practical System Designs. IEEE Engineering in Medicine and Biology Magazine 27, 64–71 (2008)CrossRefGoogle Scholar
  4. 4.
    Golla, F.L., Winter, A.L.: Analysis of Cerebral Responses to Flicker in Patients Complaining of Episodic Headache. Electroencephalography and Clinical Neurophysiology 11, 539–549 (1959)CrossRefGoogle Scholar
  5. 5.
    Chen, W.T., Wang, S.J., Fuh, J.L., Lin, C.P., Ko, Y.C., Lin, Y.: Peri-ictal Normalization of Visual Cortical Excitability in Migraine: An MEG Study. Cephalalgia 29, 1202–1211 (2009)CrossRefGoogle Scholar
  6. 6.
    Debener, S., Minow, F., Emkes, R., Gandras, K., de Vos, M.: How about Taking a Low-cost, Small, and Wireless EEG for a Walk? Psychophysiology 49, 1617–1621 (2012)CrossRefGoogle Scholar
  7. 7.
    Bin, G.Y., Gao, X.R., Yan, Z., Hong, B.: An Online Multi-Channel SSVEP-Based Brain-Computer Interface Using a Canonical Correlation Analysis Method. Journal of Neural Engineering 6, 046002 (2009)Google Scholar
  8. 8.
    Lin, Z., Zhang, C., Wu, W., Gao, X.: Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs. IEEE Transactions on Biomedical Engineering 53, 2610–2614 (2006)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Wang, Y.T., Jung, T.P.: Visual Stimulus Design for High-Rate SSVEP BCI. Electronics Letters 46, 1057–1058 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuan-Pin Lin
    • 1
  • Yijun Wang
    • 1
  • Chun-Shu Wei
    • 1
  • Tzyy-Ping Jung
    • 1
  1. 1.Swartz Center for Computational Neuroscience, Institute for Neural ComputationUniversity of CaliforniaSan DiegoUSA

Personalised recommendations