Automated Reasoning Service for HOL Light

  • Cezary Kaliszyk
  • Josef Urban
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7961)

Abstract

HOL(y)Hammer is an AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system, in particular for the users of the large Flyspeck library. The service uses several automated reasoning systems combined with several premise selection methods trained on previous Flyspeck proofs, to attack a new conjecture that uses the concepts defined in the Flyspeck library. The public online incarnation of the service runs on a 48-CPU server, currently employing in parallel for each task 25 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise are discussed, and an initial account of using the system is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-valued special functions. J. Autom. Reasoning 44(3), 175–205 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: Issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding Monomorphic and Polymorphic Types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013), http://www21.in.tum.de/~blanchet/enc_types_paper.pdf CrossRefGoogle Scholar
  4. 4.
    Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with rank-1 polymorphism, http://www21.in.tum.de/~blanchet/tff1spec.pdf
  5. 5.
    Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW Learning Architecture. Technical Report UIUCDCS-R-99-2101, UIUC Computer Science Department, 5 (1999)Google Scholar
  6. 6.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Furbach, U., Shankar, N. (eds.): IJCAR 2006. LNCS (LNAI), vol. 4130. Springer, Heidelberg (2006)MATHGoogle Scholar
  8. 8.
    Van Gelder, A., Sutcliffe, G.: Extending the TPTP language to higher-order logic with automated parser generation. In: Furbach, Shankar (eds.) [7], pp. 156–161Google Scholar
  9. 9.
    Hales, T.C.: Introduction to the Flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms, Proofs. Dagstuhl Seminar Proceedings, vol. 05021. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2005)Google Scholar
  10. 10.
    Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Harrison, J.: Optimizing Proof Search in Model Elimination. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 313–327. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 299–314. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. Accepted to ITP 2013, http://cl-informatik.uibk.ac.at/~cek/import.pdf
  14. 14.
    Kaliszyk, C., Urban, J.: PRocH: Proof reconstruction for HOL Light. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 267–274. Springer, Heidelberg (2013), http://mws.cs.ru.nl/~urban/proofs.pdf CrossRefGoogle Scholar
  15. 15.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR, abs/1211.7012 (2012)Google Scholar
  16. 16.
    Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview and evaluation of premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 378–392. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning 40(1), 35–60 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Paulson, L.C., Blanchette, J.: Three years of experience with Sledgehammer, a practical link between automated and interactive theorem provers. In: 8th IWIL (2010) (Invited talk)Google Scholar
  19. 19.
    Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Pitts, A.: The HOL logic. In: Gordon, M.J.C., Melham, T.F. (eds.) Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press (1993)Google Scholar
  21. 21.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2-3), 91–110 (2002)MATHGoogle Scholar
  22. 22.
    Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2-3), 111–126 (2002)MATHGoogle Scholar
  23. 23.
    Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for writing derivations and finite interpretations. In: Furbach, Shankar (eds.) [7], pp. 67–81Google Scholar
  24. 24.
    Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display: A wiki for Flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 152–167. Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized mathematics. International Journal on Artificial Intelligence Tools 15(1), 109–130 (2006)CrossRefGoogle Scholar
  26. 26.
    Urban, J.: An Overview of Methods for Large-Theory Automated Theorem Proving (Invited Paper). In: Höfner, P., McIver, A., Struth, G. (eds.) ATE Workshop. CEUR Workshop Proceedings, vol. 760, pp. 3–8. CEUR-WS.org (2011)Google Scholar
  27. 27.
    Urban, J.: Parallelizing Mizar. CoRR, abs/1206.0141 (2012)Google Scholar
  28. 28.
    Urban, J.: BliStr: The Blind Strategymaker. CoRR, abs/1301.2683 (2013)Google Scholar
  29. 29.
    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reasoning 50, 229–241 (2013)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/Calculemus/MKM 2010. LNCS, vol. 6167, pp. 132–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - Machine Learner for Automated Reasoning with Semantic Guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP Machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 263–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Vinge, V.: A Fire Upon the Deep. Tor Books (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cezary Kaliszyk
    • 1
  • Josef Urban
    • 2
  1. 1.University of InnsbruckAustria
  2. 2.Radboud UniversityNijmegenThe Netherlands

Personalised recommendations