A Qualitative Comparison of the Suitability of Four Theorem Provers for Basic Auction Theory

  • Christoph Lange
  • Marco B. Caminati
  • Manfred Kerber
  • Till Mossakowski
  • Colin Rowat
  • Makarius Wenzel
  • Wolfgang Windsteiger
Conference paper

DOI: 10.1007/978-3-642-39320-4_13

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7961)
Cite this paper as:
Lange C. et al. (2013) A Qualitative Comparison of the Suitability of Four Theorem Provers for Basic Auction Theory. In: Carette J., Aspinall D., Lange C., Sojka P., Windsteiger W. (eds) Intelligent Computer Mathematics. CICM 2013. Lecture Notes in Computer Science, vol 7961. Springer, Berlin, Heidelberg

Abstract

Novel auction schemes are constantly being designed. Their design has significant consequences for the allocation of goods and the revenues generated. But how to tell whether a new design has the desired properties, such as efficiency, i.e. allocating goods to those bidders who value them most? We say: by formal, machine-checked proofs. We investigated the suitability of the Isabelle, Theorema, Mizar, and Hets/CASL/TPTP theorem provers for reproducing a key result of auction theory: Vickrey’s 1961 theorem on the properties of second-price auctions. Based on our formalisation experience, taking an auction designer’s perspective, we give recommendations on what system to use for formalising auctions, and outline further steps towards a complete auction theory toolbox.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christoph Lange
    • 1
  • Marco B. Caminati
    • 2
  • Manfred Kerber
    • 1
  • Till Mossakowski
    • 3
  • Colin Rowat
    • 4
  • Makarius Wenzel
    • 5
  • Wolfgang Windsteiger
    • 6
  1. 1.Computer ScienceUniversity of BirminghamUK
  2. 2.Italy
  3. 3.University of Bremen and DFKI GmbH BremenGermany
  4. 4.EconomicsUniversity of BirminghamUK
  5. 5.Laboratoire LRI, UMR8623Univ. Paris-SudOrsayFrance
  6. 6.RISCJohannes Kepler University Linz (JKU)Austria

Personalised recommendations