Formal Mathematics on Display: A Wiki for Flyspeck

  • Carst Tankink
  • Cezary Kaliszyk
  • Josef Urban
  • Herman Geuvers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7961)

Abstract

The Agora system is a prototype “Wiki for Formal Mathematics”, with an aim to support developing and documenting large formalizations of mathematics in a proof assistant. The functions implemented in Agora include in-browser editing, strong AI/ATP proof advice, verification, and HTML rendering. The HTML rendering contains hyperlinks and provides on-demand explanation of the proof state for each proof step. In the present paper we show the prototype Flyspeck Wiki as an instance of Agora for HOL Light formalizations. The wiki can be used for formalizations of mathematics and for writing informal wiki pages about mathematics. Such informal pages may contain islands of formal text, which is used here for providing an initial cross-linking between Hales’s informal Flyspeck book, and the formal Flyspeck development.

The Agora platform intends to address distributed wiki-style collaboration on large formalization projects, in particular both the aspect of immediate editing, verification and rendering of formal code, and the aspect of gradual and mutual refactoring and correspondence of the initial informal text and its formalization. Here, we highlight these features within the Flyspeck Wiki.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized Reasoning 3(2), 153–245 (2010)MathSciNetMATHGoogle Scholar
  2. 2.
    Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer (2004)Google Scholar
  3. 3.
    Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  4. 4.
    Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Gonthier, G.: Engineering mathematics: the odd order theorem proof. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 1–2. ACM (2013)Google Scholar
  6. 6.
    Gonthier, G.: The four colour theorem: Engineering of a formal proof. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Tankink, C.: Proof in context — web editing with rich, modeless contextual feedback. To appear in Proceedings of UITP 2012 (2012)Google Scholar
  9. 9.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR abs/1211.7012 (2012)Google Scholar
  10. 10.
    Kohlhase, M. (ed.): OMDoc. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Pérez, F., Granger, B.E.: IPython: a System for Interactive Scientific Computing. Comput. Sci. Eng. 9(3), 21–29 (2007)CrossRefGoogle Scholar
  12. 12.
    Stein, W.A., et al.: Sage mathematics software (2009)Google Scholar
  13. 13.
    Tankink, C., Lange, C., Urban, J.: Point-and-write – documenting formal mathematics by reference. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 169–185. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Hales, T.C.: Dense Sphere Packings - a blueprint for formal proofs. Cambridge University Press (2012)Google Scholar
  15. 15.
    Tankink, C., McKinna, J.: Dynamic proof pages. In: ITP Workshop on Mathematical Wikis (MathWikis). CEUR Workshop Proceedings, vol. 767 (2011)Google Scholar
  16. 16.
    Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof re-animation. In: [24], pp. 440–454Google Scholar
  17. 17.
    Adams, M., Aspinall, D.: Recording and refactoring HOL Light tactic proofs. In: Proceedings of the IJCAR Workshop on Automated Theory Exploration (2012)Google Scholar
  18. 18.
    Kaliszyk, C., Urban, J.: Automated reasoning service for HOL Light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 120–135. Springer, Heidelberg (2013)Google Scholar
  19. 19.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2-3), 91–110 (2002)MATHGoogle Scholar
  20. 20.
    Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2-3), 111–126 (2002)MATHGoogle Scholar
  21. 21.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Kaliszyk, C., Urban, J.: PRocH: Proof reconstruction for HOL Light (2013)Google Scholar
  23. 23.
    Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: Motivation, considerations, and initial prototype. In: [24], pp. 455–469Google Scholar
  24. 24.
    Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.): AISC 2010. LNCS, vol. 6167. Springer, Heidelberg (2010)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carst Tankink
    • 1
  • Cezary Kaliszyk
    • 2
  • Josef Urban
    • 1
  • Herman Geuvers
    • 1
    • 3
  1. 1.ICISRadboud Universiteit NijmegenNetherlands
  2. 2.Institut für InformatikUniversität InnsbruckAustria
  3. 3.Technical University EindhovenNetherlands

Personalised recommendations