Advertisement

Finite Nondeterminism vs. DFAs with Multiple Initial States

Conference paper
  • 446 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8031)

Abstract

It is known that a nondeterministic finite automaton (NFA) with n states and branching k can be simulated by a deterministic finite automaton with multiple initial states (MDFA) having k ·n states. We give a lower bound \(\frac{k}{1 + \log k} \cdot n\) for the size blow-up of this conversion. We consider also upper and lower bounds for the number of states an MDFA needs to simulate a given NFA of finite tree width.

Keywords

finite automata limited nondeterminism deterministic automata with multiple initial states state complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J. Comput. System Sci. 78, 198–210 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on state complexity (March 2013) (submitted for publication) Google Scholar
  4. 4.
    Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System. Sci. 9, 1–19 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci. 8, 193–234 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inform. Comput. 86, 179–194 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata — A survey. Inf. Comput. 209, 456–470 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic finite automata. J. Automata, Languages and Combinatorics 6, 453–466 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inform. Comput. 172, 202–217 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kappes, M.: Descriptional complexity of deterministic finite automata with multiple initial states. J. Automata, Languages, and Combinatorics 5, 269–278 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Leung, H.: On finite automata with limited nondeterminism. Acta Inf. 35, 595–624 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Comput. Sci. 327, 375–390 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeterminism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 252–265. Springer, Heidelberg (2012); Full version accepted for publication in J. Automata, Lang., CombinatoricsCrossRefGoogle Scholar
  14. 14.
    Palioudakis, A., Salomaa, K., Akl, S.G.: Comparisons between measures of nondeterminism on finite automata. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 217–228. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Salomaa, K.: Descriptional complexity of nondeterministic finite automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 31–35. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press (2009)Google Scholar
  17. 17.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations