Advertisement

Comparisons between Measures of Nondeterminism on Finite Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8031)

Abstract

We study the interrelationships between various measures of nondeterminism for finite automata. The tree width of an NFA (nondeterministic finite automaton) A is a function that associates a positive integer n to the maximum number of leaves in any computation tree of A on an input of length n. The trace of an NFA is defined in terms of the maximum product of the degrees of nondeterministic choices in computation on inputs of given length. We establish upper and lower bounds for the trace function of an NFA in terms of its tree width. Additionally, the unbounded trace of an NFA has exponential growth.

Keywords

finite automata limited nondeterminism state complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234 (2002)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inf. Comput. 86(2), 179–194 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Goldstine, J., Leung, H., Wotschke, D.: On the relation between ambiguity and nondeterminism in finite automata. Inf. Comput. 100(2), 261–270 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Holzer, M., Kutrib, M.: Descriptional complexity of (un)ambiguous finite state machines and pushdown automata. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hromkovič, J., Karhumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Measures of nondeterminism in finite automata. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 199–210. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Hromkovic, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inf. Comput. 172(2), 202–217 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kintala, C.M.R., Wotschke, D.: Amounts of nondeterminism in finite automata. Acta Inf. 13, 199–204 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Leung, H.: On finite automata with limited nondeterminism. Acta Inf. 35(7), 595–624 (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput. 212, 15–36 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeterminism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 252–265. Springer, Heidelberg (2012); A full version of the paper is accepted for publication in JALCCrossRefGoogle Scholar
  14. 14.
    Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Shallit, J.O.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press (2008)Google Scholar
  16. 16.
    Yu, S.: Regular Languages. In: Handbook of Formal Languages, vol. 1, 41–110. Springer (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations