Advertisement

Nondeterministic State Complexity of Proportional Removals

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8031)

Abstract

The language \(\frac{1}{2}(L)\) consists of first halfs of strings in L. Many other variants of a proportional removal operation have been considered in the literature and a characterization of removal operations that preserve regularity is known. We consider the nondeterministic state complexity of the operation \(\frac{1}{2}(L)\) and, more generally, of polynomial removals as defined by Domaratzki (J. Automata, Languages and Combinatorics 7(4), 2002). We give an O(n 2) upper bound for the nondeterministic state complexity of polynomial removals and a matching lower bound in cases where the polynomial is a sum of a monomial and a constant.

Keywords

finite automata state complexity nondeterminism proportional removals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3), 149–158 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Domaratzki, M.: State complexity of proportional removals. Journal of Automata, Languages and Combinatorics 7(4), 455–468 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Gao, Y., Moreira, N., Reis, R., Yu, S.: A review of state complexity of individual operations. Technical report, Universidade do Porto, Technical Report Series DCC-2011-08, Version 1.1 (September 2012), http://www.dcc.fc.up.pt/Pubs
  4. 4.
    Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the descriptional and computational complexity. Int. J. Found. Comput. Sci. 20(4), 563–580 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Lupanov, O.: A comparison of two types of finite sources. Problemy Kibernetiki 9, 328–335 (1963)Google Scholar
  9. 9.
    Maslov, A.: Estimates of the number of states of finite automata. Doklady Akademii Nauk SSSR 194, 1266–1268 (1970)MathSciNetGoogle Scholar
  10. 10.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)Google Scholar
  11. 11.
    Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers C-20(10), 1211–1214 (1971)CrossRefGoogle Scholar
  12. 12.
    Seiferas, J.I., McNaughton, R.: Regularity-preserving relations. Theor. Comput. Sci. 2(2), 147–154 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Shallit, J.O.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press (2008)Google Scholar
  14. 14.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yu, S.: Regular Languages. In: Handbook of Formal Languages, vol. 1, pp. 41–110. Springer (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations