Automated Shift Design and Break Scheduling

  • Luca Di Gaspero
  • Johannes Gärtner
  • Nysret Musliu
  • Andrea Schaerf
  • Werner Schafhauser
  • Wolfgang Slany
Part of the Studies in Computational Intelligence book series (SCI, volume 505)

Abstract

Shift design and break scheduling are important employee scheduling problems that arise in many contexts, especially at airports, call centers, and service industries. The aim is to find a minimum number of legal shifts, the number of workers assigned to them, and a suitable number of breaks so that the deviation from predetermined workforce requirements is minimized. Such problems have been extensively investigated in Operations Research and recently have been also tackled with Artificial Intelligence techniques. In this chapter we outline major characteristics of these problems and provide a literature survey over solution techniques to solve them. We then describe in detail two state-of-the-art approaches based on local search techniques. Finally, we discuss our experiences with the application of one of these techniques in a real life case study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aykin, T.: Optimal shift scheduling with multiple break windows. Management Science 42, 591–603 (1996)MATHCrossRefGoogle Scholar
  2. 2.
    Aykin, T.: A comparative evaluation of modelling approaches to the labour shift scheduling problem. European Journal of Operational Research 125, 381–397 (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Bechtold, S.E., Jacobs, L.W.: Implicit modelling of flexible break assignments in optimal shift scheduling. Management Science 36(11), 1339–1351 (1990)CrossRefGoogle Scholar
  4. 4.
    Beer, A., Gaertner, J., Musliu, N., Schafhauser, W., Slany, W.: Scheduling breaks in shift plans for call centers. In: Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling, Montreal, Canada (2008)Google Scholar
  5. 5.
    Beer, A., Gärtner, J., Musliu, N., Schafhauser, W., Slany, W.: An AI-based break-scheduling system for supervisory personnel. IEEE Intelligent Systems 25(2), 60–73 (2010)CrossRefGoogle Scholar
  6. 6.
    Côté, M.-C., Gendron, B., Quimper, C.-G., Rousseau, L.-M.: Formal languages for integer programming modeling of shift scheduling problems. Constraints 16(1), 55–76 (2011)CrossRefGoogle Scholar
  7. 7.
    Côté, M.-C., Gendron, B., Rousseau, L.-M.: Grammar-based integer programming models for multiactivity shift scheduling. Management Science 57(1), 151–163 (2011)MATHCrossRefGoogle Scholar
  8. 8.
    Dantzig, G.B.: A comment on Eddie’s traffic delays at toll booths. Operations Research 2, 339–341 (1954)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49(1-3), 61–95 (1991)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The minimum shift design problem. Annals of Operations Research 155, 79–105 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Di Gaspero, L., Schaerf, A.: Multi-neighbourhood local search with application to course timetabling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 262–275. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Gärtner, J., Musliu, N., Slany, W.: Rota: a research project on algorithms for workforce scheduling and shift design optimization. AI Commun. 14(2), 83–92 (2001)MATHGoogle Scholar
  13. 13.
    Gärtner, J., Musliu, N., Slany, W.: A heuristic based system for generation of shifts with breaks. In: Proceedings of the 24th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge (2004)Google Scholar
  14. 14.
    Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The minimum shift design problem: Theory and practice. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 593–604. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., Slany, W.: A hybrid LS-CP solver for the shifts and breaks design problem. In: Blesa, M.J., Blum, C., Raidl, G., Roli, A., Sampels, M. (eds.) HM 2010. LNCS, vol. 6373, pp. 46–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Dordrecht (1997)MATHCrossRefGoogle Scholar
  17. 17.
    Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier / Morgan Kaufmann (2004)Google Scholar
  18. 18.
    Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. Artif. Intell. 58(1-3), 161–205 (1992)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Musliu, N., Schaerf, A., Slany, W.: Local search for shift design. European Journal of Operational Research 153(1), 51–64 (2004)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Musliu, N., Schafhauser, W., Widl, M.: A memetic algorithm for a break scheduling problem. In: 8th Metaheuristic International Conference, Hamburg, Germany (2009)Google Scholar
  21. 21.
    Musliu, N.: Intelligent Search Methods for Workforce Scheduling: New Ideas and Practical Applications. PhD thesis, Vienna University of Technology (2001)Google Scholar
  22. 22.
    Musliu, N.: Heuristic methods for automatic rotating workforce scheduling. International Journal of Computational Intelligence Research 2(4), 309–326 (2006)CrossRefGoogle Scholar
  23. 23.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall (1982)Google Scholar
  24. 24.
    Quimper, C.-G., Rousseau, L.-M.: A large neighbourhood search approach to the multi-activity shift scheduling problem. Journal of Heuristics 16(3), 373–391 (2010)MATHCrossRefGoogle Scholar
  25. 25.
    Rekik, M., Cordeau, J.F., Soumis, F.: Implicit shift scheduling with multiple breaks and work stretch duration restrictions. Journal of Scheduling 13, 49–75 (2010)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Schafhauser, W.: TEMPLE - A Domain Specific Language for Modeling and Solving Real-Life Staff Scheduling Problems. PhD thesis, Vienna University of Technology (2010)Google Scholar
  27. 27.
    Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In: Proceedings of the Second DIMACS Challange on Cliques, Coloring, and Satisfiability (1993)Google Scholar
  28. 28.
    Tellier, P., White, G.: Generating personnel schedules in an industrial setting using a tabu search algorithm. In: Burke, E.K., Rudova, H. (eds.) The 5th International Conference on the Practice and Theory of Automated Timetabling, pp. 293–302 (2006)Google Scholar
  29. 29.
    Thompson, G.: Improved implicit modeling of the labor shift scheduling problem. Management Science 41(4), 595–607 (1995)MATHCrossRefGoogle Scholar
  30. 30.
    Widl, M.: Memetic algorithms for break scheduling. Master’s thesis, Vienna University of Technology, Vienna, Austria (2010), http://www.kr.tuwien.ac.at/staff/widl/thesis.pdf
  31. 31.
    Widl, M., Musliu, N.: An improved memetic algorithm for break scheduling. In: Blesa, M.J., Blum, C., Raidl, G., Roli, A., Sampels, M. (eds.) HM 2010. LNCS, vol. 6373, pp. 133–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luca Di Gaspero
    • 1
  • Johannes Gärtner
    • 2
  • Nysret Musliu
    • 3
  • Andrea Schaerf
    • 1
  • Werner Schafhauser
    • 2
  • Wolfgang Slany
    • 4
  1. 1.DIEGMUniversità degli Studi di UdineUdineItaly
  2. 2.XIMES GmbHWienAustria
  3. 3.DBAITechnische Universität WienWienAustria
  4. 4.ISTTechnische Universität GrazGrazAustria

Personalised recommendations