Real-Time Modeling of Ocean Currents for Navigating Underwater Glider Sensing Networks

  • Dongsik Chang
  • Xiaolin Liang
  • Wencen Wu
  • Catherine R. Edwards
  • Fumin Zhang
Part of the Studies in Computational Intelligence book series (SCI, volume 507)


Ocean models that are able to provide accurate and real-time prediction of ocean currents will improve the performance of glider navigation. In this paper, we propose a novel approach to compute a model for ocean currents at higher resolution than existing approaches. By focusing on a small area and incorporating measurements from multiple gliders, we are able to perform real-time computation of the model, which can be used to improve performance of underwater glider navigation in the ocean. Our model uses a lower resolution, larger scale dataset generated from existing models to initialize the computation. We have also demonstrated incorporating data streams from high frequency (HF) radar measurements of surface currents. Glider navigation performance using the proposed ocean currents model is demonstrated in a simulated flow field based on data collected off the coast of Georgia, USA.


Mobile sensing network Underwater glider navigation  Ocean circulation model 


  1. 1.
    Shchepetkin, A.F., McWilliams, J.C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9(4), 347–404 (2005)CrossRefGoogle Scholar
  2. 2.
    Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L.: Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys. 227(7), 3595–3624 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chassignet, E.P., Hurlburt, H.E., Smedstad, O.M., Halliwell, G.R., Hogan, P.J., Wallcraft, A.J., Baraille, R., Bleck, R.: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65(1–4), 60–83 (2007)CrossRefGoogle Scholar
  4. 4.
    Smith, R.N., Chao, Y., Li, P.P., Caron, D.A., Jones, B.H., Sukhatme, G.S.: Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int. J. Robot. Res. 29(12), 1475–1497 (2010)CrossRefGoogle Scholar
  5. 5.
    Szwaykowska, K., Zhang, F.: A lower bound on navigation error for marine robots guided by ocean circulation models. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp. 3583–3588. San Francisco (2011)Google Scholar
  6. 6.
    Moon, C.B., Chung, W.: Design of navigation behaviors and the selection framework with generalized stochastic petri nets toward dependable navigation of a mobile robot. In: Proceedings of 2010 IEEE Conference on Robotics and Automation (May 2010), pp. 2989–2994. Anchorage (2010)Google Scholar
  7. 7.
    Lynch, K., Schwartz, I., Yang, P., Freeman, R.: Decentralized environmental modeling by mobile sensor networks. IEEE Trans. Rob. 24(3), 710–724 (2008)CrossRefGoogle Scholar
  8. 8.
    Zhang, F., Fratantoni, D.M., Paley, D., Lund, J., Leonard, N.E.: Control of coordinated patterns for ocean sampling. Int. J. Control. 80(7), 1186–1199 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Leonard, N.E., Paley, D.A., Davis, R.E., Fratantoni, D.M., Lekien, F., Zhang, F.: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot. 27(6), 718–740 (2010)CrossRefGoogle Scholar
  10. 10.
    Bingham, B.: Predicting the navigation performance of underwater vehicles. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 261–266. St. Louis (2009)Google Scholar
  11. 11.
    Smith, R.N., Schwager, M., Smith, S.L., Jones, B.H., Rus, D., Sukhatme, G.S.: Persistent ocean monitoring with underwater gliders: adapting sampling resolution. J. Field Robot. 28(5), 714–741 (2011)CrossRefGoogle Scholar
  12. 12.
    Hover, F.: Path planning for data assimilation in mobile environmental monitoring systems. In: Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 213–218. St. Louis (2009) Oct 2009Google Scholar
  13. 13.
    Paduan, J.D., Shulman, I.: HF radar data assimilation in the Monterey Bay area. J. Geophys. Res. 109, C07S09 (2004)Google Scholar
  14. 14.
    Zhang, F., Leonard, N.E.: Cooperative control and filtering for cooperative exploration. IEEE Trans. Autom. Control. 55(3), 650–663 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liang, X., Wu, W., Chang, D., Zhang, F.: Real-time modelling of tidal current for navigating underwater glider sensing networks. Procedia Comput. Sci. 10, 1121–1126 (2012)CrossRefGoogle Scholar
  16. 16.
    Kumar, S.: Neural Networks: A Classroom Approach. Tata McGraw-Hill, Education, India (2004)Google Scholar
  17. 17.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1996)Google Scholar
  18. 18.
    Pawlowicz, R., Beardsley, B., Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput. Geosci. 28(8), 929–937 (2002)CrossRefGoogle Scholar
  19. 19.
    Anjyo, K., Lewis, J.P.: RBF interpolation and Gaussian process regression through an RKHS formulation. J. Math. Ind. 3(2011A–6), 63–71 (2011)Google Scholar
  20. 20.
    Figueiredo, M.A.T.: On Gaussian radial basis function approximations: Interpretation, extensions, and learning strategies. In: Proceedings of 15th International Conference on Pattern Recognition, Vol. 2, pp. 618–621. Barcelona (2000)Google Scholar
  21. 21.
    Hartigan, J.A., Wong, M.A.: Algorithm as 136: a K-means clustering algorithm. J. Roy. Stat. Soc. 28(1), 100–108 (1979)MATHGoogle Scholar
  22. 22.
    Simon, D.: Optimal state estimation: Kalman, H\(\infty \) and nonlinear approaches. Wiley, Chichester (2006)Google Scholar
  23. 23.
    Gurgel, K.W., Antonischki, G., Essen, H.H., Schlick, T.: Wellen Radar (WERA): a new ground-wave HF radar for ocean remote sensing. Coast. Eng. 37(3–4), 219–234 (1999)CrossRefGoogle Scholar
  24. 24.
    Savidge, D., Amft, J., Gargett, A., Archer, M., Conley, D., Voulgaris, G., Wyatt, L., Gurgel, K.W.: Assessment of WERA long-range HF-radar performance from the user’s perspective. In: Proceedings of the IEEE/OES/CWTM 10th Working Conference on Current Measurement, Technology, pp. 31–38 (2011)Google Scholar
  25. 25.
    Luettich, R.A., Westerink, J.J., Scheffner, N.W.: ADCIRC: an advanced three-dimensional circulation model for shelves coasts and estuaries, report 1: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical report, U.S. Army Engineers Waterways Experiment Station, Vicksburg (1992)Google Scholar
  26. 26.
    Blanton, B.O., Werner, F.E., Seim, H.E., Luettich, Jr., R.A., Lynch, D.R., Smith, K.W., Voulgaris, G., Bingham, F.M., Way, F.: Barotropic tides in the South Atlantic Bight. J. Geophys. Res. 109, C12024 (2004)Google Scholar
  27. 27.
    Szwaykowska, K., Zhang, F.: A lower bound for controlled Lagrangian particle tracking error. In: Proceedings of 49th IEEE Conference on Decision and Control, pp. 4353–4358. Atlanta (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dongsik Chang
    • 1
  • Xiaolin Liang
    • 1
  • Wencen Wu
    • 1
  • Catherine R. Edwards
    • 2
  • Fumin Zhang
    • 1
  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Skidaway Institute of OceanographySavannahUSA

Personalised recommendations