Ensemble of Local Phase Quantization Variants with Ternary Encoding

  • Loris Nanni
  • Sheryl Brahnam
  • Alessandra Lumini
  • Tonya Barrier
Part of the Studies in Computational Intelligence book series (SCI, volume 506)


In this chapter, we present some variants of local phase quantization (LPQ), a novel texture descriptor that has been shown to perform well on a variety of classification tasks. After providing an extensive review of LPQ, we report experiments using several new LPQ derivatives obtained by varying LPQ parameters and by using a ternary rather than the binary encoding scheme. Multiple parameter sets are generated and each set is used to train a standard machine-learning classifier, a stand-alone support vector machine. The ensemble is then combined using the sum rule. Extensive experiments are conducted using six different datasets. Our method is compared along with the best state-of-the-art methods for solving each problem represented by the datasets. In each case, the best result is obtained using an ensemble with LPQ variants and ternary encoding. In this study, we also examine the distribution in the images of the most important bins of the LPQ histograms using Gabor filters. We find that incorporating this information into our best texture descriptor approach produces even better results.


Support Vector Machine Local Binary Pattern Gabor Filter Random Subspace Local Ternary Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank T. Ojala, M. Pietikäinen and T. Mäenpää for sharing their LBP code and V. Ojansivu and J. Heikkilä for sharing their LPQ code


  1. 1.
    Chan, C.H., Kittler, J., Poh, N., Ahonen, T., Pietikäinen, M.: (Multiscale) local phase quantization histogram discriminant analysis with score normalisation for robust face recognition. In: IEEE Workshop on Video-Oriented Object and Event Classification, pp. 633–640. Kyoto, Japan (2009)Google Scholar
  2. 2.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 9th European Conference on Computer Vision, San Diego CA (2005)Google Scholar
  4. 4.
    Fawcett, T.: ROC graphs: notes and practical considerations for researchers. HP Laboratories, Palo Alto (2004)Google Scholar
  5. 5.
    Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification, In: Nature Inspired Smart Information Systems (NiSIS). pp. 1–9 Albufeira, (2005)Google Scholar
  6. 6.
    Junior, G.B., Cardoso de Paiva, A., Muniz de Oliveira, A.C.: Classification of breast tissues using Moran’s index and Geary’s coefficient as texture signatures and SVM. Comput. Biol. Med. 39(12), 1063–1072 (2009)CrossRefGoogle Scholar
  7. 7.
    Kawashima, S., Kanehisa, M.: AAindex: amino acid index database. Nucleic Acids Res. 20(1), 374 (2000)CrossRefGoogle Scholar
  8. 8.
    Kong, W.K., Zhang, D., Li, W.: Palmprint feature extraction using 2-D Gabor filters. Pattern Recogn. 36, 2317–2339 (2003)CrossRefGoogle Scholar
  9. 9.
    Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lowe, D.: Distinctive image features from scale invariant key points. Int. J. Comput. Vis. 60(2), 91–110 (2004)Google Scholar
  11. 11.
    Manjunath, B., Ma, W.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)CrossRefGoogle Scholar
  12. 12.
    Nanni, L., Brahnam, S., Lumini, A.: A study for selecting the best performing rotation invariant patterns in local binary/ternary patterns, in image processing, Computer Vision, & Pattern Recognition (IPCV’10), Las Vegas, (2010)Google Scholar
  13. 13.
    Nanni, L., Shi, J.- Y., Brahnam, S., Lumini, A.: Protein classification using texture descriptors extracted from the protein backbone image. J. Theor. Biol. (In Press.)Google Scholar
  14. 14.
    Nanni, L., Lumini, A.: Ensemble of multiple pedestrian representations. IEEE Trans. Intell. Transp. Syst. 9(2), 365–369 (2008)CrossRefGoogle Scholar
  15. 15.
    Nanni, L., Lumini, A.: Coding of amino acids by texture descriptors. Artif. Intell. Med. 48(1), 43–50 (2010)CrossRefGoogle Scholar
  16. 16.
    Ojala, T., Pietikainen, M., Maeenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Tran. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  17. 17.
    Ojansivu, V., Heikkila, J.: Blur insensitive texture classification using local phase quantization. In: ICISP 2008Google Scholar
  18. 18.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions, Anal. Modell. Faces Gestures, LNCS vol. 4778, 168–182 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Loris Nanni
    • 1
  • Sheryl Brahnam
    • 3
  • Alessandra Lumini
    • 2
  • Tonya Barrier
    • 3
  1. 1.Department of Information EngineeringUniversity of PaduaPadovaItaly
  2. 2.Department of Computer Science and Engineering (DISI)Universit à di BolognaCesenaItaly
  3. 3.Computer Information SystemsMissouri State UniversitySpringfieldUSA

Personalised recommendations