A Unifying Framework for LBP and Related Methods

Chapter

Abstract

In this chapter we describe a unifying framework for local binary patterns and variants which we refer to as histograms of equivalent patterns (HEP). In presenting this concept we discuss some basic issues in texture analysis: the problem of defining what texture is; the problem of classifying the many existing texture descriptors; the concept of bag-of-features and the design choices that one has to deal with when designing a texture descriptor. We show how this relates to local binary patterns and related methods and propose a unifying mathematical formalism to express them within the HEP. Finally, we give a geometrical interpretation of these methods as partitioning operators in a high-dimensional space, showing how this representation can propound possible directions for future research.

References

  1. 1.
    Ahonen, T., Pietikäinen, M.: Soft histograms for local binary patterns. In: Proceedings of the Finnish Signal Processing Symposium (FINSIG 2007), Oulu (2007)Google Scholar
  2. 2.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram Fourier features. In: Proceedings of the 16th Scandinavian Conference (SCIA 2009), Lecture Notes in Computer Science, vol. 5575, pp. 61–70. Springer (2009)Google Scholar
  3. 3.
    Barcelo, A., Montseny, E., Sobrevilla, P.: On fuzzy texture spectrum for natural microtextures characterization. In: Proceedings EUSFLAT-LFA 2005, pp. 685–690 (2005)Google Scholar
  4. 4.
    Beck, M., Robins, S.: Computing the continuous discretely. Integer-point Enumeration in Polyhedra. Springer, New York (2007)Google Scholar
  5. 5.
    Bianconi, F., Fernández, A.: Evaluation of the effects of Gabor filter parameters on texture classification. Pattern Recogn. 40(12), 3325–3335 (2007)Google Scholar
  6. 6.
    Bianconi, F., Fernández, A., González, E., Ribas, F.: Texture classification through combination of sequential colour texture classifiers. In: Rueda, L., Mery, D., Kittler, J., (eds.) Progress in Pattern Recognition, Image Analysis and Applications. Proceedings of the 12th Iberoamerican Congress on Pattern Recognition (CIARP 2007), Lecture Notes in Computer Science, vol. 4756, pp. 231–240. Springer (2008)Google Scholar
  7. 7.
    Bianconi, F., Fernández, A., González, E., Caride, D., Calviño, A.: Rotation-invariant colour texture classification through multilayer CCR. Pattern Recogn. Lett. 30(8), 765–773 (2009)Google Scholar
  8. 8.
    Bianconi, F., Fernández, A.: On the occurrence probability of local binary patterns: a theoretical study. J. Math. Imaging Vis. 40(3), 259–268 (2011)Google Scholar
  9. 9.
    Boureau, Y.-L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 111–118. Haifa, June 2010Google Scholar
  10. 10.
    Chang, C.-I., Chen, Y.: Gradient texture unit coding for texture analysis. Opt. Eng. 43(8), 1891–1902 (2004)Google Scholar
  11. 11.
    Crosier, M., Griffin, L. D.: Using basic image features for texture classification. Int. J. Comput. Vis. 88, 447–460 (2010)Google Scholar
  12. 12.
    Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2, 1160–1169 (1985)Google Scholar
  13. 13.
    Davies, E. R.: Introduction to texture analysis. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of Texture Analysis, pp. 1–31. Imperial College Press, London (2008)Google Scholar
  14. 14.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 524–531, June 2005Google Scholar
  15. 15.
    Fernández, A., Álvarez, M. X., Bianconi, F.: Image classification with binary gradient contours. Opt. Lasers Eng. 49(9–10), 1177–1184 (2011)Google Scholar
  16. 16.
    Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P. F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. 22(6), 913–926 (2011)Google Scholar
  17. 17.
    Fernández, A., Álvarez, M. X., Bianconi, F.: Texture description through histograms of equivalent patterns. J. Math. Imag. Vis. 45(1), 76–102 (2012)Google Scholar
  18. 18.
    Fu, X., Wei, W.: Centralized binary patterns embedded with image euclidean distance for facial expression recognition. In: Proceedings of the Fourth International Conference on Natural Computation (ICNC’08), vol. 4, pp. 115–119 (2008)Google Scholar
  19. 19.
    Gangeh, M. J., Ghodsi, A., Kamel, M.: Dictionary learning in texture classification. In: Kamel, M., Campilho, A. (eds.) Proceedings of the 8th International Conference on Image Analysis and Recognition (ICIAR 2011), Lecture Notes in Computer Science, vol. 6753, pp. 335–343. Springer, Burnaby, June 2011Google Scholar
  20. 20.
    Geman, D., Koloydenko, A.: Invariant statistics and coding of natural microimages. In: Proceedings of the First International Workshop on Statistical and Computational Theories of Vision, Fort Collins, 1999 (published on the web)Google Scholar
  21. 21.
    van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.-M.: Visual word ambiguity. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1271–1283 (2010)Google Scholar
  22. 22.
    Ghita, O., Ilea, D. E., Fernández, A., Whelan, P. F.: Local binary patterns versus signal processing texture analysis. A study from a performance evaluation perspective. Sens. Rev. 32, 149–162 (2012)Google Scholar
  23. 23.
    van Gool, L., Dewaele, P., Oosterlinck, A.: Texture analysis anno 1983. Comput. Vis. Graph. Image Process. 29(3), 336–357 (1985)Google Scholar
  24. 24.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)Google Scholar
  25. 25.
    Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: Proceedings of the 4th International Conference on Image Analysis and Recognition (ICIAR 2007), Lecture Notes in Computer Science, vol. 4633, pp. 387–398. Montreal, August 2007Google Scholar
  26. 26.
    Haralick, R. M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)Google Scholar
  27. 27.
    He, Y., Sang, N., Gao, C.: Multi-structure local binary patterns for texture classification. Pattern Anal. Appl. pp. 1–13 (2012) (Article in Press)Google Scholar
  28. 28.
    He, D.-C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IIEEE Trans. Geosci. Remote Sens. 28(4), 509–512 (1990)Google Scholar
  29. 29.
    He, D.-C., Wang, L.: Unsupervised textural classification of images using the texture spectrum. Pattern Recogn. 25(3), 247–255 (1992)Google Scholar
  30. 30.
    He, Y., Sang, N.: Robust illumination invariant texture classification using gradient local binary patterns. In: Proceedings of 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, pp. 1–6. Xiamen, January 2011Google Scholar
  31. 31.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42, 425–436 (2009)Google Scholar
  32. 32.
    Hepplewhite, L., Stonhamm, T. J.: Texture classification using N-tuple pattern recognition. In: Proceedings of the 13th International Conference on Pattern Recognition (ICPR’96), vol. 4, pp. 159–163 (1996)Google Scholar
  33. 33.
    Iakovidis, D. K., Keramidas, E. G., Maroulis, D.: Fuzzy local binary patterns for ultrasound texture characterization. In: Campilho, A., Kamel, M. (eds.) Proceedings of the 5th International Conference on Image Analysis and Recognition (ICIAR 2008), Lecture Notes in Computer Science, vol. 5112, pp. 750–759. Póvoa de Varzim (2008)Google Scholar
  34. 34.
    Jiang, Y.-G., Ngo, C.-W., Jun Yang.: Towards optimal bag-of-features for object categorization and semantic video retrieval. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR’07), pp. 494–501 (2007)Google Scholar
  35. 35.
    Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under bayesian framework. In: Proceedings of the 3rd International Conference on Image and Graphics, pp. 306–309 (2004)Google Scholar
  36. 36.
    Julesz, B.: Experiments in the visual perception of texture. Sci. Am. 232(4), 34–43 (1975)Google Scholar
  37. 37.
    Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 604–610 (2005)Google Scholar
  38. 38.
    Kant, I.: The Critique of Pure Reason. Pennsylvania State Electronic Classics Series, 2010 Translated by Meiklejoh, J.M.DGoogle Scholar
  39. 39.
    Konishi, S., Yuille, A. L.: Statistical cues for domain specific image segmentation with performance analysis. In: Proceedings of the 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’00), vol. 1, pp. 125–132 (2000)Google Scholar
  40. 40.
    Kurmyshev, E. V., Cervantes, M.: A quasi-statistical approach to digital binary image representation. Rev. Mex. Fís. 42(1), 104–116 (1996)Google Scholar
  41. 41.
    Lahdenoja, O.: A statistical approach for characterising local binary patterns. Technical Report 795, Turku Centre for Computer Science, Finland, (2006)Google Scholar
  42. 42.
    Lawrence, J.: Polytope volume computation. Math. Comput. 57(195), 259–271 (1991)Google Scholar
  43. 43.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)Google Scholar
  44. 44.
    Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vision 43(1), 29–44 (2001)Google Scholar
  45. 45.
    Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Trans. Image Process. 12(6), 661–670 (2003)Google Scholar
  46. 46.
    Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: Proceedings of the 13th IEEE International Conference on Computer Vision (ICCV 2011), pp. 2486–2493 (2011)Google Scholar
  47. 47.
    Liu, L., Fieguth, P. W.: Texture classification from random features. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 574–586 (2012)Google Scholar
  48. 48.
    Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P. W.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012)Google Scholar
  49. 49.
    Lowe, D. G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)Google Scholar
  50. 50.
    Madrid-Cuevas, F.J., Medina, R., Prieto, M., Fernández, N.L., Carmona, A.: Simplified texture unit: a new descriptor of the local texture in gray-level images. In: Perales López, F.J., Campilho, A.C., Pérez de la Blanca, N., Sanfeliu, A. (eds.) Pattern Recognition and Image Analysis, Proceedings of the First Iberian Conference (IbPRIA 2003), Lecture Notes in Computer Science, vol. 2652, pp. 470–477. Springer (2003)Google Scholar
  51. 51.
    Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 197–216. World Scientific Publishing (2005)Google Scholar
  52. 52.
    Malik, J., Belongie, S., Shi, J., Leung, T.: Textons, contours and regions: cue integration in image segmentation. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision (ICCV’99), vol. 2, pp. 918–925 (1999)Google Scholar
  53. 53.
    Manning, C.D., Raghavan, P., Schütze, H.: An introduction to information retrieval. Cambridge University Press, Cambridge, (2009)Google Scholar
  54. 54.
    Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)Google Scholar
  55. 55.
    Nanni, L., Brahnam, S. Lumini, A.: A local approach based on a Local Binary Patterns variant texture descriptor for classifying pain states. Expert Syst. Appl. 37(12), 7888–7894 (2010)Google Scholar
  56. 56.
    Nanni, L., Brahnam, S., Lumini, A.: Random interest regions for object recognition based on texture descriptors and bag of features. Expert Syst. Appl. 39(1), 973–977 (2012)Google Scholar
  57. 57.
    Nowak, E. Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Proceedings of European Conference on Computer Vision 2006 (ECCV’06), Part IV, Lecture Notes in Computer Science, vol. 3954, pp. 490–503. Springer-Verlag (2006)Google Scholar
  58. 58.
    Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 582–585 (1994)Google Scholar
  59. 59.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)Google Scholar
  60. 60.
    Ojala, T., Pietikäinen, M., Kyllönen, J.: Gray level cooccurrence histograms via learning vector quantization. In: Proceedings of the 11th Scandinavian Conference on Image Analysis (SCIA 1999), pp. 103–108. Kangerlussuaq, Greenland (1999)Google Scholar
  61. 61.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)Google Scholar
  62. 62.
    Patel, D., Stonham, T. J.: A single layer neural network for texture discrimination. In: IEEE International Symposium on Circuits and Systems, vol. 5, pp. 2656–2660, June 1991Google Scholar
  63. 63.
    Patel, D., Stonham, T. J.: Texture image classification and segmentation using rank-order clustering. In: Proceedings of the 11th International Conference on Pattern Recognition (ICPR’92), vol. 3, pp. 92–95. IEEE Computer Society (1992)Google Scholar
  64. 64.
    Penatti, O. A. B., Valle, E., da Silva Torres, R.: Comparative study of global color and texture descriptors for web image retrieval. J. Vis. Commun. Image Represent. 23, 359–380 (2012)Google Scholar
  65. 65.
    Petrou M., Sevilla, P.G: Image Processing. Dealing with Texture. Wiley Interscience, Chichester (2006)Google Scholar
  66. 66.
    Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns, Computational Imaging and Vision, vol. 40. Springer, London, (2011)Google Scholar
  67. 67.
    Pothos, V. K., Theoharatos, C., Zygouris, E., Economu, G.: Distributional-based texture classification using non-parametric statistics. Pattern Anal. Appl. 11, 117–129 (2008)Google Scholar
  68. 68.
    Tajeripour, F., Rezaei, M., Saberi, M., Ershad, S. F.: Texture classification approach based on combination of random threshold vector technique and co-occurrence matrixes. In: Proceedings of the International Conference on Computer Science and Network Technology, 2011 (ICCSNT), vol. 4, pp. 2303–2306. Harbin, China, December 2011Google Scholar
  69. 69.
    Rouco, J., Mosquera, A., Penedo, M. G., Ortega, M., Penas, M.: Texture description in local scale using texton histograms with quadrature filter universal dictionaries. IET Comput. Vision 5(4), 211–221 (2011)Google Scholar
  70. 70.
    Rubner, Y., Tomasi, C., Guibas, L. J.: A metric for distributions with applications to image databases. In: Proceedings of the Sixth International Conference on Computer Vision (ICCV’98), pp. 59–66, (1998)Google Scholar
  71. 71.
    Sánchez-Yáñez, R. E., Kurmyshev, E. V., Fernández, A.: One-class texture classifier in the CCR feature space. Pattern Recogn. Lett. 24(9–10), 1503–1511 (2003)Google Scholar
  72. 72.
    Sebe, N., Lew, M. S.: Texture features for content-based retrieval. In: Lew, M. S. (ed.) Principles of Visual Information Retrieval, pp. 51–85. Springer-Verlag, London (2001)Google Scholar
  73. 73.
    Serratosa, F., Sanfeliu, A.: Signatures versus histograms: definitions, distances and algorithms. Pattern Recogn. 39(5), 921–934 (2006)Google Scholar
  74. 74.
    Stachowiak, G. P., Podsiadlo, P., Stachowiak, G. W.: A comparison of texture feature extraction methods for machine condition monitoring and failure analysis. Tribol. Lett. 20(2), 133–147 (2005)Google Scholar
  75. 75.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and Modelling of Faces and Gestures, Lecture Notes in Computer Science, vol. 4778, pp. 168–182. Springer (2007)Google Scholar
  76. 76.
    Taur, J. S., Tao, C.-W.: Texture classification using a fuzzy texture spectrum and neural networks. J. Electron. Imaging 7(1), 29–35 (1998)Google Scholar
  77. 77.
    Tuceryan, M., Jain, A.K.: Texture analysis. In Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 2nd edn. pp. 207–248. World Scientific Publishing, Singapore (1998)Google Scholar
  78. 78.
    Tuytelaars, T., Schmid, C.: Vector quantizing feature space with a regular lattice. In: Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV’07), pp. 1–8, Rio de Janeiro, Brazil, October 2007. IEEEGoogle Scholar
  79. 79.
    Unser, M.: Local linear transforms for texture measurements. Signal Process. 11(1), 61–79 (1986)Google Scholar
  80. 80.
    Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 90–94 (1998)Google Scholar
  81. 81.
    Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, pp. 691–698, June 2003Google Scholar
  82. 82.
    Varma, M., Zisserman, A.: Unifying statistical texture classification frameworks. Image Vis. Comput. 22(14), 1175–1183 (2004)Google Scholar
  83. 83.
    Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vision 62(1–2), 61–81 (2005)Google Scholar
  84. 84.
    Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)Google Scholar
  85. 85.
    Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: Proceedings of the 13th International Conference on Computer Vision (ICCV2011), pp. 603–610. Barcelona, November 2011Google Scholar
  86. 86.
    Wechsler, H.: Texture analysis - A survey. Signal Process. 2(3), 271–282 (1980)Google Scholar
  87. 87.
    Wu, C.-M., Chen, Y.-C.: Statistical feature matrix for texture analysis. CVGIP: graphical Models Image Process. 54(5), 407–419 (1992)Google Scholar
  88. 88.
    Xie, X., Mirmehdi, M.: A galaxy of texture features. In Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of Texture Analysis, pp. 375–406. Imperial College Press, London (2008)Google Scholar
  89. 89.
    Xie, J., Zhang, L., You, J., Zhang, D.: Texture classification via patch-based sparse texton learning. In: Proceedings of the International Conference on Image Processing, pp. 2737–2740 (2010)Google Scholar
  90. 90.
    Xu, B., Gong, P., Seto, E., Spear, R.: Comparison of gray-level reduction and different texture spectrum encoding methods for land-use classification using a panchromatic Ikonos image. Photogram. Eng. Remote Sens. 69(5), 529–536 (2003)Google Scholar
  91. 91.
    Zabih, R., Woodfill J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the 3rd European Conference on Computer Vision (ECCV 1994), pp. 151–158, Springer-Verlag, Stockholm, May 1994Google Scholar
  92. 92.
    Zhang, H., Rahmani, R., Cholleti, S. R., Goldman, S. A.: Local image representations using pruned salient points with applications to CBIR. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, Santa Barbara, October 2006Google Scholar
  93. 93.
    Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007)Google Scholar
  94. 94.
    Zhou, H., Wang, R., Wang, C.: A novel extended local-binary-pattern operator for texture analysis. Inf. Sci. 178(22), 4314–4325 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.School of Industrial EngineeringUniversidade de VigoVigoSpain

Personalised recommendations