Advertisement

Paul Erdős and Interpolation: Problems, Results, New Developments

  • Peter Vertesi
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

Pál (Paul) Erdős was born 100 years ago (March 26, 1913 in Budapest). He died on September 20, 1996 in Warsaw, when he attended a conference. He wrote about 1500 papers mainly with coauthors including those more than 80 works which are closely connected with approximation theory (interpolation, mean convergence, orthogonal polynomials, a.s.o.).

Keywords

Acta Math Orthogonal Polynomial Trigonometric Polynomial Interpolation Polynomial Lagrange Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Vértesi, Classical (unweighted) and weighted interpolation, in the book “A Panorama of Hungarian Mathematics in the Twentieth Century. I”, Bolyai Society Mathematical Studies 14 (2005), 71–117.Google Scholar
  2. [2]
    T. Erdélyi and P. Vértesi, In memoriam Paul Erdős, (1913–1986), J. Approx. Theory 94 (1998), 1–41.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    L. Babai, C. Pommerance and P. Vértesi, The Mathematics of Paul Erdős, Notices of the AMS 45(1) (1998), 19–31.zbMATHGoogle Scholar
  4. [4]
    P. Erdős, Problems and results on the theory of interpolation, I, Acta Math. Acad. Sci. Hungar., 9 (1958), 381–388.CrossRefMathSciNetGoogle Scholar
  5. [5]
    P. Erdős and P. Vértesi, On the Lebesgue function of interpolation, in: Functional Analysis and Approximation (P. L. Butzer, B. Sz.-Nagy, E. Görlich, eds.), ISNM, 60, Birkhäuser (1981), 299–309.Google Scholar
  6. [6]
    P. Erdős, Problems and results on the theory of interpolation, II, Acta Math. Acad. Sci. Hungar., 12 (1961), 235–244.CrossRefMathSciNetGoogle Scholar
  7. [7]
    C. de Boor and A. Pinkus, Proof of the conjectures of Bernstein and Erdős concerning the optimal nodes for polynomial interpolation, J. Approx. Theory, 24 (1978), 289–303.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    T. A. Kilgore, A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm, J. Approx. Theory, 24 (1978), 273–288.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    P. Vértesi, Optimal Lebesgue constant for Lagrange interpolation, SIAM J. Numer. Anal., 27 (1990), 1322–1331.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    P. Erdős and G. Grünwald, Über die aritmetischen Mittelwerte der Lagrangeschen Interpolationspolynome, Studia Math., 7 (1938), 82–95.Google Scholar
  11. [11]
    P. Erdős and G. Halász, On the arithmetic means of Lagrange interpolation, in: Approximation Theory (J. Szabados, K. Tandori, eds.), Colloq. Math. Soc. J. Bolyai, 58 (1991), pp. 263–274.Google Scholar
  12. [12]
    P. Erdős, Some theorems and remarks on interpolation, Acta Sci. Math. (Szeged), 12 (1950), 11–17.MathSciNetGoogle Scholar
  13. [13]
    P. Erdős and P. Vértesi, On the almost everywhere divergence of Lagrange interpolation of polynomials for arbitrary systems of nodes, Acta Math. Acad. Sci. Hungar., 36 (1980), 71–89.CrossRefMathSciNetGoogle Scholar
  14. [14]
    P. Erdős and P. Vértesi, Correction of some misprints in our paper: “On the almost everywhere divergence of Lagrange interpolation polynomials for arbitrary systems of nodes” [Acta Math. Acad. Sci. Hungar., 36, no. 1–2 (1980), 71–89], Acta Math. Acad. Sci. Hungar. 38 (1981), 263.CrossRefMathSciNetGoogle Scholar
  15. [15]
    P. Erdős and P. Vértesi, On the almost everywhere divergence of Lagrange interpolation, in: Approximation and Function Spaces (Gdańsk, 1979), North-Holland (Amsterdam-New York, 1981), pp. 270–278.Google Scholar
  16. [16]
    P. Erdős and P. Turán, On the role of the Lebesgue function the theory of Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 6 (1955), 47–66.CrossRefMathSciNetGoogle Scholar
  17. [17]
    G. Halász, On projections into the space of trigonometric polynomials, Acta Sci. Math. (Szeged), 57 (1993), 353–366.zbMATHMathSciNetGoogle Scholar
  18. [18]
    R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin (1993).CrossRefzbMATHGoogle Scholar
  19. [19]
    L. Szili and P. Vértesi, On multivariate projection operators, Journal of Approximation Theory, 159 (2009), 154–164.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    P. Erdős, Problems and results on the theory of interpolation, I, Acta Math. Acad. Sci. Hungar., 9 (1958), 381–388.CrossRefMathSciNetGoogle Scholar
  21. [21]
    P. Erdős and E. Feldheim, Sur le mode de convergence pour l’interpolation de Lagrange, C. R. Acad. Sci. Paris, 203 (1936), 913–915.Google Scholar
  22. [22]
    E. Feldheim, Sur le mode de convergence dans l’interpolation de Lagrange, Dokl. Nauk. USSR, 14 (1937), 327–331.Google Scholar
  23. [23]
    P. Turán, On some open problems of approximation theory, J. Approx. Theory, 29 (1980), 23–85.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    P. Erdős and P. Turán, On interpolation, I. Quadrature and mean convergence in the Lagrange interpolation, Ann. of Math., 38 (1937), 142–155.CrossRefMathSciNetGoogle Scholar
  25. [25]
    L. Fejér, Sur les fonctions bornées et integrables, C. R. Acad. Sci. Paris, 131 (1900), 984–987.Google Scholar
  26. [26]
    Y. G. Shi, Bounds and inequalities for general orthogonal polynomials on finite intervals, J. Approx. Theory, 73 (1993), 303–319.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    P. Vértesi, Lebesgue function type sums of Hermite interpolations, Acta Math. Acad. Sci. Hungar., 64 (1994), 341–349.CrossRefzbMATHGoogle Scholar
  28. [28]
    L. Fejér, Über Interpolation, Göttinger Nachrichten (1916), 66–91.Google Scholar
  29. [29]
    P. Erdős, On some convergence properties in the interpolation polynomials, Ann.of Math., 44 (1943), 330–337.CrossRefMathSciNetGoogle Scholar
  30. [30]
    P. Erdős, A. Kroó and J. Szabados, On convergent interpolatory polynomials, J. Approx. Theory, 58 (1989), 232–241.CrossRefMathSciNetGoogle Scholar
  31. [31]
    Y.G. Shi, On an extremal problem concerning interpolation, Acta Sci. Math. (Szeged), 65 (1999), 567–575.zbMATHMathSciNetGoogle Scholar
  32. [32]
    P. Erdős and P. Turán, On interpolation, II., Ann. of Math., 39 (1938), 703–724.CrossRefMathSciNetGoogle Scholar
  33. [33]
    P. Erdős and P. Turán, On interpolation, III., Ann. of Math., 41 (1940), 510–553.CrossRefMathSciNetGoogle Scholar
  34. [34]
    P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions: A case study, J. Approx. Th., 48 (1986), 3–167.CrossRefzbMATHGoogle Scholar
  35. [35]
    A.L. Levin and D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.CrossRefzbMATHGoogle Scholar
  36. [36]
    P. Erdős, On the distribution of roots of orthogonal polynomials, in: Proceedings of the Conference on the Constructive Theory of Functions, (eds. G. Alexits et al.). Akadémiai Kiadó, Budapest, 1972, pp.145–150.Google Scholar
  37. [37]
    P. Erdős and G. Freud, On orthogonal polynomials with regularly distributed zeros, Proc. London Math. Soc. 29 (1974), 521–537.CrossRefMathSciNetGoogle Scholar
  38. [38]
    P. Vértesi, On the Lebesgue function of weighted Lagrange interpolation, II., J. Austral Math. Soc. (Series A), 65 (1998), 145–162.CrossRefzbMATHGoogle Scholar
  39. [39]
    P. Vértesi, An Erdős type convergence process in weighted interpolation. I. (Freud type weights), Acta Math. Hungar., 91 (2000), 195–215.CrossRefGoogle Scholar
  40. [40]
    L. Szili and P. Vértesi, An Erdős type convergence process in weighted interpolation, II, Acta Math. Acad. Sci. Hungar., 98 (2003), 129–162.CrossRefzbMATHGoogle Scholar
  41. [41]
    E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton (1971).zbMATHGoogle Scholar
  42. [42]
    A. Zygmund, Trigonometric Series, Vol. I and Vol. II, Cambridge University Press, Cambridge (1959).zbMATHGoogle Scholar
  43. [43]
    J. G. Herriot, Nörlund summability of multiple Fourier series, Duke Math. J., 11 (1944), 735–754.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    H. Berens and Y. Xu, Fejér means for multivariate Fourier series, Mat. Z. 221 (1996), 449–465.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.CrossRefzbMATHGoogle Scholar
  46. [46]
    J. Szabados and P. Vértesi, Interpolation of Functions, World Science Publisher, Singapore, New Jerssey, London, Hong Kong, 1990.CrossRefzbMATHGoogle Scholar
  47. [47]
    P. Vértesi, Some recent results on interpolation, in: A tribute to Paul Erdős, Cambridge Univ. Press, 1990, 451–457.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Peter Vertesi
    • 1
  1. 1.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations