Advertisement

Incomplete Transition Complexity of Basic Operations on Finite Languages

  • Eva Maia
  • Nelma Moreira
  • Rogério Reis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7982)

Abstract

The state complexity of basic operations on finite languages (considering complete DFAs) has been extensively studied in the literature. In this paper we study the incomplete (deterministic) state and transition complexity on finite languages of boolean operations, concatenation, star, and reversal. For all operations we give tight upper bounds for both descriptional measures. We correct the published state complexity of concatenation for complete DFAs and provide a tight upper bound for the case when the right automaton is larger than the left one. For all binary operations the tightness is proved using family languages with a variable alphabet size. In general the operational complexities depend not only on the complexities of the operands but also on other refined measures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications, Stanford University (2003)Google Scholar
  2. 2.
    Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer (2006)Google Scholar
  4. 4.
    Gao, Y., Salomaa, K., Yu, S.: Transition complexity of incomplete DFAs. Fundam. Inform. 110(1-4), 143–158 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Han, Y.S., Salomaa, K.: State complexity of union and intersection of finite languages. Int. J. Found. Comput. Sci. 19(3), 581–595 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley (1979)Google Scholar
  7. 7.
    Maia, E., Moreira, N., Reis, R.: Incomplete transition complexity of some basic operations. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 319–331. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Maurel, D., Guenthner, F.: Automata and Dictionaries. College Publications (2005)Google Scholar
  9. 9.
    Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J. Funct. Program. 19(2), 173–190 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary alphabets. J. of Aut., Lang. and Comb. 2(3), 177–186 (1997)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. CUP (2008)Google Scholar
  12. 12.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eva Maia
    • 1
  • Nelma Moreira
    • 1
  • Rogério Reis
    • 1
  1. 1.CMUP & DCCFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations