Generating Small Automata and the Černý Conjecture

  • Andrzej Kisielewicz
  • Marek Szykuła
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7982)


We present a new efficient algorithm to generate all nonisomorphic automata with given numbers of states and input letters. The generation procedure may be restricted effectively to strongly connected automata. This is used to verify the Černý conjecture for all binary automata with n ≤ 11 states, which improves the results in the literature. We compute also the distributions of the length of the shortest reset word for binary automata with n ≤ 10 states, which completes the results reported by other authors.


Černý conjecture synchronizing word nonisomorphic automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Ananichev, D., Gusev, V., Volkov, M.: Primitive digraphs with large exponents and slowly synchronizing automata. In: Zapiski Nauchnyh Seminarov POMI (Kombinatorika i Teorija Grafov. IV), vol. 402, pp. 9–39 (2012) (In Russian)Google Scholar
  3. 3.
    Berlinkov, M.: Approximating the minimum length of synchronizing words is hard. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 37–47. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Computing 19, 500–510 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press (1973)Google Scholar
  6. 6.
    Harrison, M.: A census of finite automata. Canadian Journal of Mathematics 17, 100–113 (1965)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kisielewicz, A., Kowalski, J., Szykuła, M.: A Fast Algorithm Finding the Shortest Reset Words. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 182–196. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Koršunov, A.D.: On the number of non-isomorphic strongly connected finite automata. Journal of Information Processing and Cybernetics 22(9), 459–462 (1986)Google Scholar
  9. 9.
    Kudałcik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert Systems with Applications 39(14), 11746–11757 (2012)CrossRefGoogle Scholar
  10. 10.
    Liskovets, V.A.: Enumeration of non-isomorphic strongly connected automata. Vesci Akad. Navuk BSSR Ser. Fiz.-Téhn. Navuk 3, 26–30 (1971)Google Scholar
  11. 11.
    Liskovets, V.A.: Exact enumeration of acyclic deterministic automata. Discrete Applied Mathematics 154(3), 537–551 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Read, R.C.: A note on the number of functional digraphs. Mathematische Annalen 143, 109–110 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Robinson, R.W.: Counting strongly connected finite automata. In: Graph Theory with Applications to Algorithms and Computer Science, pp. 671–685 (1985)Google Scholar
  15. 15.
    Sandberg, S.: Homing and synchronizing sequence. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset word of random automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 290–298. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples concerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Trahtman, A.N.: Modifying the upper bound on the length of minimal synchronizing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrzej Kisielewicz
    • 1
  • Marek Szykuła
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of WrocławPoland

Personalised recommendations