RPS-1 Experiment

  • V. M. Pankov
  • V. L. Prokhin
  • N. G. Khavenson
  • A. A. Gusev
  • Yu. D. Kotov
  • A. S. Glyanenko
  • A. N. Afanas’yev
  • A. A. Karapet’yants
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 400)

Abstract

This Chapter describes the physical characteristics of RPS-1 device and some of experimental results of observations onboard CORONAS-F satellite. Semiconductor spectrometer registered x-ray radiation in the range 3–31.5 Kev. Detailed spectral and time characteristics of weak solar flares were obtained for the first time under relatively low solar activity conditions and at the satellite passage outside the Earth Radiation Belts (ERB). It was established that the increase of solar activity was accompanied by the hardening of the background radiation spectra (without flares). Observations of the nighttime Earth atmosphere visualized the ERBs dynamics (disruption of the northern radiation belt in summer 2002) in the period following the cycle maximum. The energy of the nighttime X-ray emission of the upper atmosphere caused by precipitating magnetospheric electrons did not exceed 8 keV. The energy of GCR contribution to this emission did not exceed 5 keV

References

  1. 1.
    Glyanenko, A.S., Pavlov, A.A., Pankov, V.M., et al.: Calibration of the RPS-1 semi-conductor detector in the \(\ll \) CORONAS-F ≫ project. MEPhI Sci. Sess. 7, 37–38 (2001) (in Russian)Google Scholar
  2. 2.
    Kotov, Yu.D., Glyanenko, A.S., Arkhangelskii, A.I., Pavlov, A.A.: The results of preparation of the AVS-F experiment. MEPhI Sci. Sess. 7, 33–34 (2001) (in Russian)Google Scholar
  3. 3.
    Lin, R.P., Schwarz, R.A., Pelling, R.M., Hurley, K.C.: A new component of hard X-rays in solar flares. Astrophys. J. 251, L109–L114 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    Mizera, P.F., et al.: Observation of auroral arcs, electrons, and X-rays from a DMSP satellite. J. Geophys. Res. 83(A12), 5573–5578 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    Pankov, V.M., Prokhin, V.L., Shkurkin, Yu.G., et al.: The X-ray semi-conductor spectrometer (RPS-1) in the \(\ll \) CORONAS-F ≫ project. High-energy cosmic radiation. L: PhTI, pp. 196–199 (1989) (in Russian)Google Scholar
  6. 6.
    Pankov, V.M., Prokhin, V.L., Shkurkin, Yu.G., et al.: X-ray semiconductor (CdTe) spectrometer for solar flare and preflare studies. Radiophys. Quantum Electron. 34(11–12), 1002–1005 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Pankov, V.M., Prokhin, V.L., Khavenson, N.G.: The RPS-1 X-ray CdTe spectrometer onboard the CORONAS-F satellite. Sol. Syst. Res. 40(4), 314–318 (2006)ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Pounds, K.A.: The solar X-radiation below 25 Å. Ann. Geophys. 26(2), 555–565 (1970)Google Scholar
  10. 10.
    Turiel, J., MacCregor, A.: Observation of solar X-rays with a solid-state detector. Astrophys. J. 162, 287–291 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    Voss, H.D., Smith, L.G.: Global zones of energetic particle precipitation. J. Atmos. Terr. Phys. 42(2), 227–239 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. M. Pankov
    • 1
  • V. L. Prokhin
    • 1
  • N. G. Khavenson
    • 1
  • A. A. Gusev
    • 1
  • Yu. D. Kotov
    • 2
  • A. S. Glyanenko
    • 2
  • A. N. Afanas’yev
    • 3
  • A. A. Karapet’yants
    • 4
  1. 1.Space Research Institute RASMoscowRussia
  2. 2.Institute of AstrophysicsNational Research Nuclear University “MEPhI”MoscowRussia
  3. 3.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN)MoscowRussia
  4. 4.State Design OfficeDnepropetrovskUkraine

Personalised recommendations