The Effects of Negative Interaction Feedback in a Web Navigation Assistant

  • Marcelo G. Armentano
  • Analía A. Amandi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8006)

Abstract

Recommender systems are a common solution used to assist users in searching and retrieving information on the web due to the benefits that can be obtained from the evaluation and filtering of the vast amount of information available. This article presents a user study on the feasibility of using negative interaction, that is the absence of interaction with some items in a list of suggestions, as implicit feedback used to improve the performance of a web navigation assistant. Results showed an increment of 16.65% in the acceptance of the suggestions provided by the assistant and an increment of 43.05% in the average use of the suggestions window when using negative interaction with respect to not using this feedback mechanism.

Keywords

Intelligent Agents Web Navigation Assistance Implicit Feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hu, R., Dou, W., Liu, X.F., Liu, J.: Personalized Searching for Web Service Using User Interests. In: Proceedings of IEEE Ninth International Conference on the Dependable, Autonomic and Secure Computing (DASC), pp. 156–163 (2011)Google Scholar
  2. 2.
    Chi, E., Pirolli, P., Chen, K., Pitkow, J.: Using information scent to model user information needs and actions and the Web. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 490–497. ACM, New York (2001)Google Scholar
  3. 3.
    Zhu, T., Greiner, R., Häubl, G.: Learning a model of a web user’s interests. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 65–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Matthijs, N., Radlinski, F.: Personalizing web search using long term browsing history. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (WSDM 2011), pp. 25–34. ACM, New York (2011)CrossRefGoogle Scholar
  5. 5.
    Hu, R., Wanchun, D., Liu, X., Liu, J.: Personalized Searching for Web Service Using User Interests. In: Proceedings of the 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing (DASC 2011), pp. 156–163. IEEE Computer Society, Washington, DC (2011)CrossRefGoogle Scholar
  6. 6.
    Parsons, J., Ralph, P., Gallagher, K.: Using Viewing Time to Infer User Preference in Recommender Systems. In: Proceedings of the AAAI Workshop on Semantic Web Personalization held in conjunction with the 9th National Conference on Artificial Intelligence (2004)Google Scholar
  7. 7.
    Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2005), pp. 154–161 (2005)Google Scholar
  8. 8.
    Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: applying collaborative filtering to Usenet news. Commununications of ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  9. 9.
    Kurosu, M., Ookawa, Y.: Effects of Negative Information on Acquiring Procedural Knowledge. In: Proceedings of the International Conference on Computers in Education (ICCE 2002), p. 1371 (2002)Google Scholar
  10. 10.
    Porter, M.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcelo G. Armentano
    • 1
  • Analía A. Amandi
    • 1
  1. 1.ISISTAN Research Institute (CONICET/UNICEN)TandilArgentina

Personalised recommendations