Advertisement

Extending Virtual Robots towards RoboCup Soccer Simulation and @Home

  • Sander van Noort
  • Arnoud Visser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7500)

Abstract

The RoboCup is an initiative to promote the development of robotics in a social relevant way. The competition consists of several leagues and it would be beneficial if developments in one league could be reused in other leagues. This paper describes the development of a simulation model for a humanoid robot inside USARSim, which could be the basis of synergy between the Rescue Simulation, Soccer Simulation and @Home League. USARSim is an existing 3D simulator based on the Unreal Engine, which provides facilities for good quality rendering, physics simulation, networking, a highly versatile scripting language and a powerful visual editor. This simulator is now extended with the dynamics of a walking robot and validated for the humanoid robot Nao. On this basis many other robotic applications as benchmarked in the RoboCup initiative become possible.

Keywords

simulation multiple kinematic chains dynamics 

References

  1. 1.
    van Noort, S., Visser, A.: Validation of the dynamics of an humanoid robot in usarsim. In: Proceedings of the Performance Metrics for Intelligent Systems Workshop (PerMIS 2012) (March 2012)Google Scholar
  2. 2.
    van Elteren, T., Neculoiu, P., Oost, C., Shantia, A., Snijders, R., van der Wal, E., van der Zant, T.: Borg - the robocup@home team of the university of groningen - team description paper. In: Proc. CD of the 15th RoboCup International Symposium (July 2011)Google Scholar
  3. 3.
    Dessimoz, J.D., Gauthey, P.F.: Rh6-y toward a cooperating robot for home applications. In: Proc. CD of the 15th RoboCup International Symposium (July 2011)Google Scholar
  4. 4.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot simulator for research and education. In: Proceedings of the International Conference on Robotics and Automation (ICRA 2007), pp. 1400–1405 (2007)Google Scholar
  5. 5.
    Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D simulator of multiple legged robots based on uSARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Greggio, N., Menegatti, E., Silvestri, G., Pagello, E.: Simulation of Small Humanoid Robots for Soccer Domain. Journal of the Franklin Institute 346(5), 500–519 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lunenburg, J., Clephas, T., Dirkx, N., Willems, B., Elfring, J., Sandee, J., van de Molengraft, M.: Tech united eindhoven team description 2011. In: Proc. CD of the 15th RoboCup International Symposium (July 2011)Google Scholar
  8. 8.
    Alenyà, G., Tellez, R.: The reem@iri 2012 robocup@home team description. In: Proc. CD of the 16th RoboCup International Symposium (June 2012)Google Scholar
  9. 9.
    del Solar, J.R., Correa, M., Lee-Ferng, J., Hevia-Koch, P., Parra, I., Mascar, M.: Uchile homebreakers 2010 team description paper. In: Proc. CD of the 14th RoboCup International Symposium (June 2010)Google Scholar
  10. 10.
    Lallee, S., Lise Jouen, A., Petit, M., Madden, C., Boucher, J.D., Weitzenfeld, A., Dominey, P.F.: Cooperative human robot interaction with the nao humanoid: Technical description paper for the radical dudes. In: Proc. CD of the 15th RoboCup International Symposium (July 2011)Google Scholar
  11. 11.
    Balakirsky, S., Kootbally, Z.: USARSim/ROS: a combined framework for robot control and simulation. In: Proceedings of the ASME 2012 International Symposium On Flexible Automation (ISFA 2012) (June 2012)Google Scholar
  12. 12.
    Baraff, D.: An introduction to physically based modeling: rigid body simulation I - unconstrained rigid body dynamics. SIGGRAPH Course Notes (1997)Google Scholar
  13. 13.
    Fu, K., Gonzalez, R., Lee, C.: Robotics: control, sensing, vision, and intelligence. McGraw-Hill (1987)Google Scholar
  14. 14.
    Kajita, S., Tani, K.: Experimental study of biped dynamic walking. IEEE Control Systems Magazine 16(1), 13–19 (1996)CrossRefGoogle Scholar
  15. 15.
    Wieber, P.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: Proceedings of the International Conference on Humanoid Robots, pp. 137–142 (2006)Google Scholar
  16. 16.
    Verschoor, C., et al.: Dutch nao team - code release 2011 and technical report 2011, Universiteit van Amsterdam (October 2011) (published online)Google Scholar
  17. 17.
    Urbann, O., Kerner, S., Tasse, S.: Rigid and soft body simulation featuring realistic walk behaviour. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 126–136. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sander van Noort
    • 1
  • Arnoud Visser
    • 1
  1. 1.Universiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations