Advertisement

People Detection in 3d Point Clouds Using Local Surface Normals

  • Frederik Hegger
  • Nico Hochgeschwender
  • Gerhard K. Kraetzschmar
  • Paul G. Ploeger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7500)

Abstract

The ability to detect people in domestic and unconstrained environments is crucial for every service robot. The knowledge where people are is required to perform several tasks such as navigation with dynamic obstacle avoidance and human-robot-interaction. In this paper we propose a people detection approach based on 3d data provided by a RGB-D camera. We introduce a novel 3d feature descriptor based on Local Surface Normals (LSN) which is used to learn a classifier in a supervised machine learning manner. In order to increase the systems flexibility and to detect people even under partial occlusion we introduce a top-down/bottom-up segmentation. We deployed the people detection system on a real-world service robot operating at a reasonable frame rate of 5Hz. The experimental results show that our approach is able to detect persons in various poses and motions such as sitting, walking, and running.

Keywords

Human-Robot Interaction People Detection RGB-D 

References

  1. 1.
    Arras, K.O., Mozos, O.M., Burgard, W.: Using Boosted Features for the Detection of People in 2D Range Data. In: Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 3402–3407 (2007)Google Scholar
  2. 2.
    Bajracharya, M., Moghaddam, B., Howard, A., Brennan, S., Matthies, L.H.: A Fast Stereo-based System for Detecting and Tracking Pedestrians from a Moving Vehicle. The International Journal of Robotics Research 28(11-12), 1466–1485 (2009)CrossRefGoogle Scholar
  3. 3.
    Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mosenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers: Lessons learned with the pr2. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2011)Google Scholar
  4. 4.
    Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Graf, B., Reiser, U., Hagele, M., Mauz, K., Klein, P.: Robotic home assistant care-o-bot 3 - product vision and innovation platform. In: Proceedings of the IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO) (2009)Google Scholar
  6. 6.
    Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using RGB-D cameras. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 306–317. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Mozos, O.M., Kurazume, R., Hasegawa, T.: Multi-Layer People Detection using 2D Range Data. In: Proceedings of the IEEE ICRA 2009 Workshop on People Detection and Tracking, Kobe, Japan (2009)Google Scholar
  8. 8.
    Navarro-Serment, L.E., Mertz, C., Hebert, M.: Pedestrian Detection and Tracking Using Three-dimensional LADAR Data. The International Journal of Robotics Research 29(12), 1516–1528 (2010)CrossRefGoogle Scholar
  9. 9.
    Satake, J., Miura, J.: Robust Stereo-Based Person Detection and Tracking for a Person Following Robot. In: Proceedings of the IEEE ICRA 2009 Workshop on People Detection and Tracking, Kobe, Japan (2009)Google Scholar
  10. 10.
    Spinello, L., Arras, K.O.: People Detection in RGB-D Data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), San Francisco, USA (2011)Google Scholar
  11. 11.
    Spinello, L., Arras, K.O., Triebel, R., Siegwart, R., Luber, M., Tipaldi, G.D., Lau, B., Burgard, W., et al.: A Layered Approach to People Detection in 3D Range Data. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska, vol. 55, pp. 30–38 (2010)Google Scholar
  12. 12.
    Spinello, L., Siegwart, R.: Human Detection using Multimodal and Multidimensional Features. In: Proceedings of the International Conference in Robotics and Automation (ICRA), Pasadena, USA (2008)Google Scholar
  13. 13.
    Spinello, L., Siegwart, R., Triebel, R.: Multimodal People Detection and Tracking in Crowded Scenes. In: Proc. the AAAI Conf. on Artificial Intelligence: Physically Grounded AI Track, Chicago, USA, pp. 1409–1414 (2008)Google Scholar
  14. 14.
    Zivkovic, Z., Kroese, B.: Part based People Detection using 2D Range Data and Images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA, pp. 214–219 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frederik Hegger
    • 1
  • Nico Hochgeschwender
    • 1
  • Gerhard K. Kraetzschmar
    • 1
  • Paul G. Ploeger
    • 1
  1. 1.Bonn-Rhein-Sieg University of Applied SciencesSankt AugustinGermany

Personalised recommendations