A Graph Parameter That Matches the Resilience of the Certified Propagation Algorithm

  • Chris Litsas
  • Aris Pagourtzis
  • Dimitris Sakavalas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7960)

Abstract

We consider the Secure Broadcast problem in incomplete networks. We study the resilience of the Certified Propagation Algorithm (CPA), which is particularly suitable for ad hoc networks. We address the issue of determining the maximum number of corrupted players \(t^{\rm CPA}_{\rm max}\) that CPA can tolerate under the t-locally bounded adversary model, in which the adversary may corrupt at most t players in each player’s neighborhood. For any graph G and dealer-node D we provide upper and lower bounds on \(t^{\rm CPA}_{\rm max}\) that can be efficiently computed in terms of a graph theoretic parameter that we introduce in this work. Along the way we obtain an efficient 2-approximation algorithm for \(t^{\rm CPA}_{\rm max}\). We further introduce two more graph parameters, one of which matches \(t^{\rm CPA}_{\rm max}\) exactly.

Keywords

Distributed Protocols Ad Hoc Networks Secure Broadcast Byzantine Faults t-Locally Bounded Adversary Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dolev, D.: The byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993), http://doi.acm.org/10.1145/138027.138036 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Franklin, M., Wright, R.N.: Secure communication in minimal connectivity models. Journal of Cryptology 13, 9–30 (2000), http://dx.doi.org/10.1007/s001459910002 MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Garay, J.A., Moses, Y.: Fully polynomial byzantine agreement for n > 3t processors in t + 1 rounds. SIAM J. Comput. 27(1), 247–290 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ichimura, A., Shigeno, M.: A new parameter for a broadcast algorithm with locally bounded byzantine faults. Inf. Process. Lett. 110(12-13), 514–517 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp. 275–282. ACM (2004)Google Scholar
  7. 7.
    Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks. Journal of Algorithms 39(1), 47–67 (2001), http://www.sciencedirect.com/science/article/pii/S0196677400911477 MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly secure communication over arbitrary networks. In: Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, PODC 2002, pp. 193–202. ACM, New York (2002), http://doi.acm.org/10.1145/571825.571858 CrossRefGoogle Scholar
  9. 9.
    Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)MATHCrossRefGoogle Scholar
  10. 10.
    Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Process. Lett. 93(3), 109–115 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Tseng, L., Vaidya, N.H., Bhandari, V.: Broadcast using certified propagation algorithm in presence of byzantine faults. CoRR abs/1209.4620 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chris Litsas
    • 1
  • Aris Pagourtzis
    • 1
  • Dimitris Sakavalas
    • 1
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations