Advertisement

Exploring and Making Safe Dangerous Networks Using Mobile Entities

  • Mattia D’Emidio
  • Daniele Frigioni
  • Alfredo Navarra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7960)

Abstract

We consider synchronous and mobile entities that have to explore and make safe a network with faulty nodes, called black-holes, that destroy any entering entity. We are interested in the scenario where the destruction of an entity by means of a black-hole also affects all the entities within a fixed range r (in terms of hops), and we ask for the minimum number of synchronized steps needed to remove all the black-holes from that network. Clearly, if there are b black-holes in the network, then k ≥ b entities are necessary.

First, we show that the problem is NP-hard even for b = k = 1; second, we provide an asymptotical optimal solution for the case of r = 0 and a general lower bound for the case of r > 0; third, we propose two different strategies plus a refined heuristic for the case of r = 1, and we prove they are all asymptotically optimal; finally, we provide an experimental study to show the practical performance of the proposed strategies.

Keywords

Black Hole Mobile Agent Hamiltonian Path Input Graph Exploration Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Time optimal algorithms for black hole search in rings. Discrete Mathematics, Algorithms and Applications 3(4), 457–472 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bollobás, B.: Random Graphs. Cambridge University Press (2001)Google Scholar
  4. 4.
    Cooper, C., Klasing, R., Radzik, T.: Locating and repairing faults in a network with mobile agents. Theor. Comput. Sci. 411(14-15), 1638–1647 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Czyzowicz, J., Dobrev, S., Královič, R., Miklík, S., Pardubská, D.: Black hole search in directed graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 182–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in synchronous tree networks. Combinatorics, Probability and Computing 16, 595–619 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dobrev, S., Flocchini, P., Kralovic, R., Prencipe, G., Ruzicka, P., Santoro, N.: Black hole search in common interconnection networks. Networks 47(2), 61–71 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: optimal mobile agents protocols. Distributed Computing 19(1), 1–18 (2006)CrossRefGoogle Scholar
  9. 9.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–902 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dobrev, S., Flocchini, P., Santoro, N.: Improved bounds for optimal black hole search with a network map. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 111–122. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal black hole search with pebbles. Algorithmica 62(3-4), 1006–1033 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Gąsieniec, L., Klasing, R., Martin, R.A., Navarra, A., Zhang, X.: Fast periodic graph exploration with constant memory. Journal of Computer and System Sciences 74(5), 802–822 (2008)Google Scholar
  14. 14.
    Halldórsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18, 145–163 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy, K.: The CAIDA IPv4 routed/24 topology dataset, http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
  16. 16.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black hole search problems. Networks 52(4), 216–226 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kosowski, A., Navarra, A.: Graph decomposition for improving memoryless periodic exploration. Algorithmica 63(1-2), 26–38 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kosowski, A., Navarra, A., Pinotti, C.: Synchronous black hole search in directed graphs. Theoretical Computer Science 412(41), 5752–5759 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Markou, E., Paquette, M.: Black hole search and exploration in unoriented tori with synchronous scattered finite automata. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 239–253. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    OMNeT++. Discrete event simulation environment, http://www.omnetpp.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mattia D’Emidio
    • 1
  • Daniele Frigioni
    • 1
  • Alfredo Navarra
    • 2
  1. 1.Department of Information Engineering, Computer Science and MathematicsUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly

Personalised recommendations