Exploring Discriminatory Features for Automated Malware Classification

  • Guanhua Yan
  • Nathan Brown
  • Deguang Kong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7967)

Abstract

The ever-growing malware threat in the cyber space calls for techniques that are more effective than widely deployed signature-based detection systems and more scalable than manual reverse engineering by forensic experts. To counter large volumes of malware variants, machine learning techniques have been applied recently for automated malware classification. Despite the successes made from these efforts, we still lack a basic understanding of some key issues, such as what features we should use and which classifiers perform well on malware data. Against this backdrop, the goal of this work is to explore discriminatory features for automated malware classification. We conduct a systematic study on the discriminative power of various types of features extracted from malware programs, and experiment with different combinations of feature selection algorithms and classifiers. Our results not only offer insights into what features most distinguish malware families, but also shed light on how to develop scalable techniques for automated malware classification in practice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware detection using dynamic analysis. Journal of Computer Virology 7(4), 247–258 (2011)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: NDSS 2009 (2009)Google Scholar
  5. 5.
  6. 6.
    Canali, D., Lanzi, A., Balzarotti, D., Christoderescu, M., Kruegel, C., Kirda, E.: A quantitative study of accuracy in system call-based malware detection. In: ISSTA (2012)Google Scholar
  7. 7.
    He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering 21 (2009)Google Scholar
  8. 8.
    Hu, X., Chiueh, T.-C., Shin, K.G.: Large-scale malware indexing using function-call graphs. In: CCS 2009 (2009)Google Scholar
  9. 9.
  10. 10.
    Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for scalable triage and semantic analysis. In: Proceedings of ACM CCS 2011 (2011)Google Scholar
  11. 11.
    Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and efficient malware detection at the end host. In: USENIX Security 2009 (2009)Google Scholar
  12. 12.
    Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. Journal of Maching Learning Research 7, 2721–2744 (2006)MathSciNetMATHGoogle Scholar
  13. 13.
    Kong, D., Ding, C., Huang, H., Zhao, H.: Multi-label relieff and f-statistic feature selections for image annotation. In: IEEE CVPR 2012 (2012)Google Scholar
  14. 14.
    Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection using structural information of executables. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Li, Y.: Building a Decision Cluster Classification Model by a Clustering Algorithm to Classify Large High Dimensional Data with Multiple Classes. PhD thesis, The Hong Kong Polytechnic University (2010)Google Scholar
  17. 17.
  18. 18.
    Liu, H., Li, J., Wong, L.: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics 13 (2002)Google Scholar
  19. 19.
    Maggi, F., Bellini, A., Salvaneschi, G., Zanero, S.: Finding non-trivial malware naming inconsistencies. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS, vol. 7093, pp. 144–159. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Microsoft security intelligence report (January-June 2006)Google Scholar
  21. 21.
    Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware classification using binary texture analysis and dynamic analysis. In: ACM AISec 2011 (2011)Google Scholar
  22. 22.
    http://www.offensivecomputing.net/ (accessed in March 2012)
  23. 23.
  24. 24.
  25. 25.
    Perdisci, R., Lanzi, A., Lee, W.: Mcboost: Boosting scalability in malware collection and analysis using statistical classification of executables. In: ACSAC 2008 (2008)Google Scholar
  26. 26.
    Raman, K.: Selecting features to classify malware. In: Proc. of InfoSec Southwest (2012)Google Scholar
  27. 27.
    Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of drive-by-download attacks. In: ACSAC 2010 (2010)Google Scholar
  28. 28.
    Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)Google Scholar
  29. 29.
    Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H., van Steen, M.: Prudent practices for designing malware experiments: Status quo and outlook. In: IEEE Symposium on Security and Privacy (May 2012)Google Scholar
  30. 30.
    Roth, V., Lange, T.: Feature selection in clustering problems. In: NIPS 2004. MIT Press, Cambridge (2004)Google Scholar
  31. 31.
    Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: Proc. of IEEE Symposium on Security and Privacy (2001)Google Scholar
  32. 32.
  33. 33.
  34. 34.
    Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner: Mining structural information to detect malicious executables in realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 121–141. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
  36. 36.
  37. 37.
    Yang, C., Harkreader, R.C., Gu, G.: Die free or live hard? Empirical evaluation and new design for fighting evolving twitter spammers. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 318–337. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  38. 38.
    Ye, Y., Wang, D., Li, T., Ye, D., Jiang, Q.: An intelligent pe-malware detection system based on association mining. Journal in Computer Virology (2008)Google Scholar
  39. 39.
    Yu, H.-F., Huang, F.-L., Lin, C.-J.: Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2), 41–75 (2011)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guanhua Yan
    • 1
  • Nathan Brown
    • 2
  • Deguang Kong
    • 3
  1. 1.Information Sciences (CCS-3)Los Alamos National LaboratoryUSA
  2. 2.Department of Electrical and Computer EngineeringNaval Postgraduate SchoolUSA
  3. 3.Department of Computer ScienceUniversity of TexasArlingtonUSA

Personalised recommendations