Decision Problems for Additive Regular Functions

  • Rajeev Alur
  • Mukund Raghothaman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)

Abstract

Additive Cost Register Automata (ACRA) map strings to integers using a finite set of registers that are updated using assignments of the form “x: = y + c” at every step. The corresponding class of additive regular functions has multiple equivalent characterizations, appealing closure properties, and a decidable equivalence problem. In this paper, we solve two decision problems for this model. First, we define the register complexity of an additive regular function to be the minimum number of registers that an ACRA needs to compute it. We characterize the register complexity by a necessary and sufficient condition regarding the largest subset of registers whose values can be made far apart from one another. We then use this condition to design a pspace algorithm to compute the register complexity of a given ACRA, and establish a matching lower bound. Our results also lead to a machine-independent characterization of the register complexity of additive regular functions. Second, we consider two-player games over ACRAs, where the objective of one of the players is to reach a target set while minimizing the cost. We show the corresponding decision problem to be exptime-complete when the costs are non-negative integers, but undecidable when the costs are integers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., D’Antoni, L.: Streaming tree transducers. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 42–53. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular functions and cost register automata. To Appear in the 28th Annual Symposium on Logic in Computer Science (2013), Full version available at http://www.cis.upenn.edu/~alur/rca12.pdf
  3. 3.
    Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: 26th Annual Symposium on Logic in Computer Science, pp. 355–364 (2011)Google Scholar
  4. 4.
    Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. Journal of the ACM 28(1), 114–133 (1981)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative Languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Prentice Hall (2006)Google Scholar
  7. 7.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134(2), 329–363 (1994)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium on Foundations of Computer Science, pp. 254–266 (October 31-November 2, 1977)Google Scholar
  9. 9.
    Markey, N.: Weighted automata: Model checking and games. Lecture Notes (2008), http://www.lsv.ens-cachan.fr/~markey/Teaching/MPRI/2008-2009/MPRI-2.8b-4.pdf
  10. 10.
    Mohri, M.: Minimization algorithms for sequential transducers. Theoretical Computer Science 234, 177–201 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer Science, pp. 213–254. Springer (2009)Google Scholar
  12. 12.
    Papadimitriou, C., Yannakakis, M.: Multiobjective query optimization. In: Proceedings of the 20th Symposium on Principles of Database Systems, PODS 2001, pp. 52–59. ACM (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rajeev Alur
    • 1
  • Mukund Raghothaman
    • 1
  1. 1.University of PennsylvaniaUSA

Personalised recommendations