Secure Equality and Greater-Than Tests with Sublinear Online Complexity

  • Helger Lipmaa
  • Tomas Toft
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)

Abstract

Secure multiparty computation (MPC) allows multiple parties to evaluate functions without disclosing the private inputs. Secure comparisons (testing equality and greater-than) are important primitives required by many MPC applications. We propose two equality tests for ℓ-bit values with O(1) online communication that require O(ℓ) respectively O(κ) total work, where κ is a correctness parameter.

Combining these with ideas of Toft [16], we obtain (i) a greater-than protocol with sublinear online complexity in the arithmetic black-box model (O(c) rounds and O(c·ℓ1/c ) work online, with c = logℓ resulting in logarithmic online work). In difference to Toft, we do not assume two mutually incorruptible parties, but O(ℓ) offline work is required, and (ii) two greater-than protocols with the same online complexity as the above, but with overall complexity reduced to O(logℓ(κ + loglogℓ)) and O(c·ℓ1/c (κ + logℓ)); these require two mutually incorruptible parties, but are highly competitive with respect to online complexity when compared to existing protocols.

Keywords

Additively homomorphic encryption arithmetic black box secure comparison secure equality test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in a Constant Number of Rounds of Interaction. In: Rudnicki, P. (ed.) PODC 1989, pp. 201–209. ACM Press (1989)Google Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: STOC 1988, pp. 1–10. ACM Press (1988)Google Scholar
  4. 4.
    Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure Multiparty Computation Goes Live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-interactive Range Proof with Constant Communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Damgård, I.B., Nielsen, J.B.: Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Laur, S., Lipmaa, H.: A New Protocol for Conditional Disclosure of Secrets and Its Applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 207–225. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In: STOC 1999, pp. 245–254. ACM Press (1999)Google Scholar
  13. 13.
    Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Thorbek, R.: Linear Integer Secret Sharing. Ph.D. thesis, Aarhus University (2009)Google Scholar
  16. 16.
    Toft, T.: Sub-linear, Secure Comparison with Two Non-colluding Parties. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 174–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Toft, T.: Primitives and Applications for Multiparty Computation. Ph.D. thesis, Aarhus University (2007)Google Scholar
  18. 18.
    Yu, C.H.: Sign Modules in Secure Arithmetic Circuits. Tech. Rep. 2011/539, IACR (October 1, 2011), http://eprint.iacr.org/2011/539 (checked in February 2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Helger Lipmaa
    • 1
  • Tomas Toft
    • 2
  1. 1.Institute of CSUniversity of TartuEstonia
  2. 2.Dept. of CSAarhus UniversityDenmark

Personalised recommendations