A Refined Complexity Analysis of Degree Anonymization in Graphs

  • Sepp Hartung
  • André Nichterlein
  • Rolf Niedermeier
  • Ondřej Suchý
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)

Abstract

Motivated by a strongly growing interest in graph anonymization in the data mining and databases communities, we study the NP-hard problem of making a graph k-anonymous by adding as few edges as possible. Herein, a graph is k-anonymous if for every vertex in the graph there are at least k − 1 other vertices of the same degree. Our algorithmic results shed light on the performance quality of a popular heuristic due to Liu and Terzi [ACM SIGMOD 2008]; in particular, we show that the heuristic provides optimal solutions in case that many edges need to be added. Based on this, we develop a polynomial-time data reduction, yielding a polynomial-size problem kernel for the problem parameterized by the maximum vertex degree. This result is in a sense tight since we also show that the problem is already NP-hard for H-index three, implying NP-hardness for smaller parameters such as average degree and degeneracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, C.C., Li, Y., Yu, P.S.: On the hardness of graph anonymization. In: Proc. 11th IEEE ICDM, pp. 1002–1007. IEEE (2011)Google Scholar
  2. 2.
    Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D., Zhu, A.: Achieving anonymity via clustering. ACM Transactions on Algorithms 6(3), 1–19 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Chester, S., Kapron, B.M., Ramesh, G., Srivastava, G., Thomo, A., Venkatesh, S.: k-Anonymization of social networks by vertex addition. In: Proc. 15th ADBIS (2). CEUR Workshop Proceedings, vol. 789, pp. 107–116 (2011), CEUS-WS.org
  5. 5.
    Chester, S., Gaertner, J., Stege, U., Venkatesh, S.: Anonymizing subsets of social networks with degree constrained subgraphs. In: Proc. ASONAM, pp. 418–422. IEEE Computer Society (2012)Google Scholar
  6. 6.
    Chester, S., Kapron, B., Srivastava, G., Venkatesh, S.: Complexity of social network anonymization. Social Network Analysis and Mining (2012) (online available)Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  9. 9.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys 42(4), 14:1–14:53 (2010)Google Scholar
  10. 10.
    Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Proc. 15th STOC, pp. 448–456. ACM (1983)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  12. 12.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  13. 13.
    Karp, R.M.: Heuristic algorithms in computational molecular biology. J. Comput. Syst. Sci. 77(1), 122–128 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Katerinis, P., Tsikopoulos, N.: Minimum degree and f-factors in graphs. New Zealand J. Math. 29(1), 33–40 (2000)MathSciNetMATHGoogle Scholar
  15. 15.
    Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proc. 17th WWW, pp. 915–924. ACM (2008)Google Scholar
  16. 16.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proc. ACM SIGMOD 2008, pp. 93–106. ACM (2008)Google Scholar
  17. 17.
    Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland (1986)Google Scholar
  18. 18.
    Lu, X., Song, Y., Bressan, S.: Fast identity anonymization on graphs. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446, pp. 281–295. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: A parameterized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proc. 30th IEEE SP, pp. 173–187. IEEE (2009)Google Scholar
  21. 21.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  22. 22.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2010)Google Scholar
  23. 23.
    Phillips, C., Warnow, T.J.: The asymmetric median tree—a new model for building consensus trees. Discrete Appl. Math. 71(1-3), 311–335 (1996)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differentially private graph models. In: Proc. 11th ACM SIGCOMM, pp. 81–98. ACM (2011)Google Scholar
  25. 25.
    Zhou, B., Pei, J.: The k-anonymity and l-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowl. Inf. Syst. 28(1), 47–77 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sepp Hartung
    • 1
  • André Nichterlein
    • 1
  • Rolf Niedermeier
    • 1
  • Ondřej Suchý
    • 2
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany
  2. 2.Faculty of Information TechnologyCzech Technical University in PragueCzech Republic

Personalised recommendations