Rational Subsets and Submonoids of Wreath Products

  • Markus Lohrey
  • Benjamin Steinberg
  • Georg Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)


It is shown that membership in rational subsets of wreath products H ≀ V with H a finite group and V a virtually free group is decidable. On the other hand, it is shown that there exists a fixed finitely generated submonoid in the wreath product ℤ ≀ ℤ with an undecidable membership problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anisimov, A.V.: Group languages. Kibernetika 4, 18–24 (1971) (in Russian); English translation. Cybernetics 4, 594–601 (1973)Google Scholar
  2. 2.
    Benois, M.: Parties rationnelles du groupe libre. C. R. Acad. Sci. Paris, Sér. A 269, 1188–1190 (1969)MathSciNetMATHGoogle Scholar
  3. 3.
    Chambart, P., Schnoebelen, P.: Post embedding problem is not primitive recursive, with applications to channel systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 265–276. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Cleary, S.: Distortion of wreath products in some finitely-presented groups. Pacific Journal of Mathematics 228(1), 53–61 (2006)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Davis, T.C., Olshanskii, A.Y.: Subgroup distortion in wreath products of cyclic groups. Journal of Pure and Applied Algebra 215(12), 2987–3004 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Diekert, V., Muscholl, A.: Solvability of equations in free partially commutative groups is decidable. International Journal of Algebra and Computation 16(6), 1047–1069 (2006)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theor. Comput. Sci. 27, 311–332 (1983)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. Journal of Algebra 13, 173–191 (1969)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fernau, H., Stiebe, R.: Sequential grammars and automata with valences. Theor. Comput. Sci. 276(1-2), 377–405 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gilman, R.H.: Formal languages and infinite groups. In: Geometric and Computational Perspectives on Infinite Groups DIMACS Ser. Discrete Math. Theoret. Comput. Sci, vol. 25, pp. 27–51. AMS (1996)Google Scholar
  12. 12.
    Grunschlag, Z.: Algorithms in Geometric Group Theory. PhD thesis, University of California at Berkley (1999)Google Scholar
  13. 13.
    Haines, L.H.: On free monoids partially ordered by embedding. Journal of Combinatorial Theory 6, 94–98 (1969)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society. Third Series 2, 326–336 (1952)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Jurdziński, T.: Leftist grammars are non-primitive recursive. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 51–62. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Kambites, M.: Formal languages and groups as memory. Communications in Algebra 37(1), 193–208 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kambites, M., Silva, P.V., Steinberg, B.: On the rational subset problem for groups. Journal of Algebra 309(2), 622–639 (2007)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theor. Comput. Sci. 348(2–3), 277–293 (2005)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kuske, D., Lohrey, M.: Logical aspects of Cayley-graphs: the group case. Annals of Pure and Applied Logic 131(1–3), 263–286 (2005)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Lohrey, M., Sénizergues, G.: Theories of HNN-extensions and amalgamated products. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 504–515. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Lohrey, M., Steinberg, B.: The submonoid and rational subset membership problems for graph groups. Journal of Algebra 320(2), 728–755 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Lohrey, M., Steinberg, B.: Submonoids and rational subsets of groups with infinitely many ends. Journal of Algebra 324(4), 970–983 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lohrey, M., Steinberg, B.: Tilings and submonoids of metabelian groups. Theory Comput. Syst. 48(2), 411–427 (2011)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Lohrey, M., Steinberg, B., Zetzsche, G.: Rational subsets and submonoids of wreath products. arXiv.org (2013), http://arxiv.org/abs/1302.2455
  25. 25.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer (1977)Google Scholar
  26. 26.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall International (1967)Google Scholar
  27. 27.
    Motwani, R., Panigrahy, R., Saraswat, V.A., Venkatasubramanian, S.: On the decidability of accessibility problems (extended abstract). In: Proc. STOC 2000, pp. 306–315. ACM (2000)Google Scholar
  28. 28.
    Roman’kov, V.: On the occurence problem for rational subsets of a group. In: International Conference on Combinatorial and Computational Methods in Mathematics, pp. 76–81 (1999)Google Scholar
  29. 29.
    Romanovskii, N.S.: Some algorithmic problems for solvable groups. Algebra i Logika 13(1), 26–34 (1974)Google Scholar
  30. 30.
    Romanovskii, N.S.: The occurrence problem for extensions of abelian groups by nilpotent groups. Sibirsk. Mat. Zh. 21, 170–174 (1980)Google Scholar
  31. 31.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)Google Scholar
  32. 32.
    Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Inf. Process. Lett. 83(5), 251–261 (2002)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Markus Lohrey
    • 1
  • Benjamin Steinberg
    • 2
  • Georg Zetzsche
    • 3
  1. 1.Institut für InformatikUniversität LeipzigGermany
  2. 2.Department of MathematicsCity College of New YorkUSA
  3. 3.Fachbereich InformatikTechnische Universität KaiserslauternGermany

Personalised recommendations