Advertisement

Efficient Separability of Regular Languages by Subsequences and Suffixes

  • Wojciech Czerwiński
  • Wim Martens
  • Tomáš Masopust
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)

Abstract

When can two regular word languages K and L be separated by a simple language? We investigate this question and consider separation by piecewise- and suffix-testable languages and variants thereof. We give characterizations of when two languages can be separated and present an overview of when these problems can be decided in polynomial time if K and L are given by nondeterministic automata.

Keywords

Polynomial Time Regular Expression Regular Language Separation Problem Simple Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almeida, J.: Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon. Journal of Pure and Applied Algebra 69, 205–218 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Almeida, J.: Some algorithmic problems for pseudovarieties. Publicationes Mathematicae Debrecen 54, 531–552 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Almeida, J., Costa, J.C., Zeitoun, M.: Pointlike sets with respect to R and J. Journal of Pure and Applied Algebra 212(3), 486–499 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Almeida, J., Zeitoun, M.: The pseudovariety J is hyperdecidable. RAIRO Informatique Théorique et Applications 31(5), 457–482 (1997)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Arenas, M., Conca, S., Pérez, J.: Counting beyond a yottabyte, or how SPARQL 1.1 property paths will prevent the adoption of the standard. In: World Wide Web Conference, pp. 629–638 (2012)Google Scholar
  6. 6.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup Language XML 1.0, 5th edn. Tech. report, W3C Recommendation (November 2008), http://www.w3.org/TR/2008/REC-xml-20081126/
  7. 7.
    Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theoretical Computer Science 27(3), 311–332 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gao, S., Sperberg-McQueen, C.M., Thompson, H.S., Mendelsohn, N., Beech, D., Maloney, M.: W3C XML Schema Definition Language (XSD) 1.1 part 1. Tech. report, W3C (2009), http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430/
  9. 9.
    Gelade, W., Neven, F.: Succinctness of pattern-based schema languages for XML. Journal of Computer and System Sciences 77(3), 505–519 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Harris, S., Seaborne, A.: SPARQL 1.1 query language. Tech. report, W3C (2010)Google Scholar
  11. 11.
    Henckell, K., Rhodes, J., Steinberg, B.: Aperiodic pointlikes and beyond. International Journal of Algebra and Computation 20(2), 287–305 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society s3-2(1), 326–336 (1952)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kasneci, G., Schwentick, T.: The complexity of reasoning about pattern-based XML schemas. In: Principles of Database Systems, pp. 155–164 (2007)Google Scholar
  14. 14.
    Losemann, K., Martens, W.: The complexity of evaluating path expressions in SPARQL. In: Principles of Database Systems, pp. 101–112 (2012)Google Scholar
  15. 15.
    Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25(2), 322–336 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Martens, W., Neven, F., Niewerth, M., Schwentick, T.: Developing and analyzing XSDs through BonXai. Proc. of the VLDB Endowment 5(12), 1994–1997 (2012)Google Scholar
  17. 17.
    Martens, W., Neven, F., Niewerth, M., Schwentick, T.: BonXai: Combining the simplicity of DTD with the expressiveness of XML Schema (manuscript 2013)Google Scholar
  18. 18.
    Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity of XML Schema. ACM Trans. on Database Systems 31(3), 770–813 (2006)CrossRefGoogle Scholar
  19. 19.
    Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF. Journal of Web Semantics 8(4), 255–270 (2010)CrossRefGoogle Scholar
  20. 20.
    Simon, I.: Hierarchies of Events with Dot-Depth One. PhD thesis, Dep. of Applied Analysis and Computer Science, University of Waterloo, Canada (1972)Google Scholar
  21. 21.
    Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI Conference on Automata Theory and Formal Languages. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)Google Scholar
  22. 22.
    Steinberg, B.: A delay theorem for pointlikes. Semigroup Forum 63, 281–304 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Stern, J.: Characterizations of some classes of regular events. Theoretical Computer Science 35(1985), 17–42 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Stern, J.: Complexity of some problems from the theory of automata. Information and Control 66(3), 163–176 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Trahtman, A.N.: Piecewise and local threshold testability of DFA. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 347–358. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    van Rooijen, L., Zeitoun, M.: The separation problem for regular languages by piecewise testable languages (March 8, 2013), http://arxiv.org/abs/1303.2143

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wojciech Czerwiński
    • 1
  • Wim Martens
    • 1
  • Tomáš Masopust
    • 1
  1. 1.Institute for Computer ScienceUniversity of BayreuthGermany

Personalised recommendations