Search-Space Size in Contraction Hierarchies

  • Reinhard Bauer
  • Tobias Columbus
  • Ignaz Rutter
  • Dorothea Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7965)


Contraction hierarchies are a speed-up technique to improve the performance of shortest-path computations, which works very well in practice. Despite convincing practical results, there is still a lack of theoretical explanation for this behavior.

In this paper, we develop a theoretical framework for studying search space sizes in contraction hierarchies. We prove the first bounds on the size of search spaces that depend solely on structural parameters of the input graph, that is, they are independent of the edge lengths. To achieve this, we establish a connection with the well-studied elimination game. Our bounds apply to graphs with treewidth k, and to any minor-closed class of graphs that admits small separators. For trees, we show that the maximum search space size can be minimized efficiently, and the average size can be approximated efficiently within a factor of 2.

We show that, under a worst-case assumption on the edge lengths, our bounds are comparable to the recent results of Abraham et al. [1], whose analysis depends also on the edge lengths. As a side result, we link their notion of highway dimension (a parameter that is conjectured to be small, but is unknown for all practical instances) with the notion of pathwidth. This is the first relation of highway dimension with a well-known graph parameter.


Search Space Edge Length Undirected Graph Elimination Tree Supporting Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-Dimension and Shortest Path Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: Proc. 21st Annual ACM–SIAM Symp. Disc. Alg. (SODA 2010), pp. 782–793. SIAM (2010)Google Scholar
  3. 3.
    Bauer, R., Baum, M., Rutter, I., Wagner, D.: On the Complexity of Partitioning Graphs for Arc-Flags. In: Proc. 12th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2012). OpenAccess Series in Informatics (OASIcs), pp. 71–82 (2012)Google Scholar
  4. 4.
    Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocessing Speed-Up Techniques Is Hard. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 359–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Gilbert, J.R., Kloks, T., Hafsteinsson, H.: Approximating treewidth, pathwidth, and minimum elimination tree height. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 1–12. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Fakcharoenphol, J., Rao, S.: Negative weight edges, shortest paths, near linear time. In: Proceedings of the 42nd Symposium on Foundations of Computer Science (FOCS 2001), pp. 232–241 (2001)Google Scholar
  7. 7.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transport. Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  8. 8.
    George, A.: Nested dissection of a regular finite element mesh. SIAM Journal on Numerical Analysis 10(2), 345–363 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gilbert, J.R., Tarjan, R.E.: The analysis of a nested dissection algorithm. Numerische Mathematik 50(4), 377–404 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathematics 306(3), 297–317 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Milosavljević, N.: On optimal preprocessing for contraction hierarchies. In: Proc. 5th Internat. Workshop Comput. Transport. Sci., IWCTS 2012 (2012)Google Scholar
  12. 12.
    Parter, S.V.: The use of linear graphs in gaussian elimination. SIAM Review 3(2), 119–130 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rose, D.J., Tarjan, R.E.: Algorithmic aspects of vertex elimination on directed graphs. SIAM Journal on Applied Mathematics 34(1), 176–197 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schäffer, A.A.: Optimal node ranking of trees in linear time. Information Processing Letters 33(2), 91–96 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schreiber, R.: A new implementation of sparse Gaussian elimination. ACM Transactions on Mathematical Software (TOMS) 8(3), 256–276 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schulz, F., Wagner, D., Zaroliagis, C.D.: Using multi-level graphs for timetable information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51(6), 993–1024 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Reinhard Bauer
    • 1
  • Tobias Columbus
    • 1
  • Ignaz Rutter
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Karlsruhe Institute of TechnologyGermany

Personalised recommendations