The Power of Linear Programming for Finite-Valued CSPs: A Constructive Characterization

  • Vladimir Kolmogorov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7965)


A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. An instance of the problem is specified by a sum of cost functions from the language with the goal to minimise the sum.

We study which classes of finite-valued languages can be solved exactly by the basic linear programming relaxation (BLP). Thapper and Živný showed [20] that if BLP solves the language then the language admits a binary commutative fractional polymorphism. We prove that the converse is also true. This leads to a necessary and a sufficient condition which can be checked in polynomial time for a given language. In contrast, the previous necessary and sufficient condition due to [20] involved infinitely many inequalities.

More recently, Thapper and Živný [21] showed (using, in particular, a technique introduced in this paper) that core languages that do not satisfy our condition are NP-hard. Taken together, these results imply that a finite-valued language can either be solved using Linear Programming or is NP-hard.


Cost Function Constraint Satisfaction Problem Submodular Function Core Language Symmetric Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blake, A., Kohli, P., Rother, C. (eds.): Advances in Markov Random Fields for Vision and Image Processing. MIT Press (2011)Google Scholar
  2. 2.
    Cohen, D.A., Cooper, M.C., Jeavons, P.G.: An algebraic characterisation of complexity for valued constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 107–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cohen, D., Cooper, M., Jeavons, P.: Generalising submodularity and Horn clauses: Tractable optimization problems defined by tournament pair multimorphisms. Theoretical Computer Science 401(1), 36–51 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artif. Intell. 174(7-8), 449–478 (2010)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Feder, T., Vardi, M.: The computational structure of monotone monadic SNP a and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28(1), 57–104 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Huber, A., Krokhin, A., Powell, R.: Skew bisubmodularity and valued CSPs. In: SODA (2013)Google Scholar
  9. 9.
    Khot, S.: On the unique games conjecture (invited survey). In: Proceedings of the 25th Annual IEEE Conference on Computational Complexity (CCC 2010), pp. 99–121 (2010)Google Scholar
  10. 10.
    Kolmogorov, V.: Convergent tree-reweighted messages passing. PAMI 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  11. 11.
    Kolmogorov, V., Schoenemann, T.: Generalized sequential tree-reweighted message passing. CoRR, abs/1205.6352 (2012)Google Scholar
  12. 12.
    Kolmogorov, V.: The power of linear programming for valued CSPs: a constructive characterization. ArXiv, abs/1207.7213v4 (2012)Google Scholar
  13. 13.
    Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. In: SODA (2012)Google Scholar
  14. 14.
    Koster, A., van Hoesel, C.P.M., Kolen, A.W.J.: The partial constraint satisfaction problem: Facets and lifting theorems. Operation Research Letters 23(3-5), 89–97 (1998)zbMATHCrossRefGoogle Scholar
  15. 15.
    Kun, G., O’Donnell, R., Tamaki, S., Yoshida, Y., Zhou, Y.: Linear programming, width-1 CSPs, and robust satisfaction. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS 2012, pp. 484–495 (2012)Google Scholar
  16. 16.
    Raghavendra, P.: Approximating NP-hard Problems: Efficient Algorithms and their Limits. PhD Thesis (2009)Google Scholar
  17. 17.
    Savchynskyy, B., Schmidt, S., Kappes, J.H., Schnörr, C.: Efficient MRF energy minimization via adaptive diminishing smoothing. In: UAI (2012)Google Scholar
  18. 18.
    Schlesinger, M.I.: Syntactic analysis of two-dimensional visual signals in noisy conditions. Kibernetika 4, 113–130 (1976) (in Russian)Google Scholar
  19. 19.
    Sontag, D., Globerson, A., Jaakkola, T.: Introduction to dual decomposition for inference. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning. MIT Press (2011)Google Scholar
  20. 20.
    Thapper, J., Živný, S.: The power of linear programming for valued CSPs. In: FOCS (2012)Google Scholar
  21. 21.
    Thapper, J., Živný, S.: The complexity of finite-valued CSPs. ArXiv, abs/1210.2987 (2012); To appear in STOC 2013Google Scholar
  22. 22.
    Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: MAP estimation via agreement on (hyper)trees: Message-passing and linear-programming approaches. IEEE Transactions on Information Theory 51(11), 3697–3717 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Werner, T.: A linear programming approach to max-sum problem: A review. PAMI 29(7), 1165–1179 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir Kolmogorov
    • 1
  1. 1.IST Austria (Institute of Science and Technology)Austria

Personalised recommendations