Advertisement

Combining Binary Search Trees

  • Erik D. Demaine
  • John Iacono
  • Stefan Langerman
  • Özgür Özkan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7965)

Abstract

We present a general transformation for combining a constant number of binary search tree data structures (BSTs) into a single BST whose running time is within a constant factor of the minimum of any “well-behaved” bound on the running time of the given BSTs, for any online access sequence. (A BST has a well-behaved bound with f(n) overhead if it spends at most \(\mathcal{O}(f(n))\) time per access and its bound satisfies a weak sense of closure under subsequences.) In particular, we obtain a BST data structure that is \(\mathcal{O}(\log\log n)\) competitive, satisfies the working set bound (and thus satisfies the static finger bound and the static optimality bound), satisfies the dynamic finger bound, satisfies the unified bound with an additive \(\mathcal{O}(\log\log n)\) factor, and performs each access in worst-case \(\mathcal{O}(\log n)\) time.

Keywords

Constant Number Steiner Tree Binary Search Tree Brute Force Search Splay Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, B., Ian Munro, J.: Self-organizing binary search trees. Journal of the ACM 25(4), 526–535 (1978)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bayer, R.: Symmetric binary B-Trees: Data structure and maintenance algorithms. Acta Informatica 1, 290–306 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bose, P., Collette, S., Fagerberg, R., Langerman, S.: De-amortizing binary search trees. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 121–132. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Bose, P., Douïeb, K., Dujmovic, V., Howat, J.: Layered working-set trees. Algorithmica 63(1-2), 476–489 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bose, P., Douïeb, K., Iacono, J., Langerman, S.: The power and limitations of static binary search trees with lazy finger. arXiv:1304.6897 (2013)Google Scholar
  6. 6.
    Cole, R.: On the dynamic finger conjecture for splay trees. Part II: The proof. SIAM Journal on Computing 30(1), 44–85 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cole, R., Mishra, B., Schmidt, J.P., Siegel, A.: On the dynamic finger conjecture for splay trees. Part I: Splay sorting log n-block sequences. SIAM Journal on Computing 30(1), 1–43 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Demaine, E.D., Harmon, D., Iacono, J., Pǎtraşcu, M.: Dynamic optimality — almost. SIAM Journal on Computing 37(1), 240–251 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Demaine, E.D., Iacono, J., Langerman, S., Özkan, Ö.: Combining binary search trees. arXiv:1304.7604 (2013)Google Scholar
  10. 10.
    Demaine, E.D., Langerman, S., Price, E.: Confluently persistent tries for efficient version control. Algorithmica 57(3), 462–483 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Derryberry, J.C.: Adaptive Binary Search Tree. PhD thesis, CMU (2009)Google Scholar
  12. 12.
    Derryberry, J.C., Sleator, D.D.: Skip-splay: Toward achieving the unified bound in the BST model. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 194–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Iacono, J.: Improved upper bounds for pairing heaps. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 32–45. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Iacono, J.: Alternatives to splay trees with O(logn) worst-case access times. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 516–522 (2001)Google Scholar
  15. 15.
    Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and hyperbolic geometry. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC), pp. 122–135 (1986)Google Scholar
  17. 17.
    Wang, C.C., Derryberry, J., Sleator, D.D.: O(loglogn)-competitive dynamic binary search trees. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 374–383 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • John Iacono
    • 2
  • Stefan Langerman
    • 3
  • Özgür Özkan
    • 2
  1. 1.Massachusetts Institute of TechnologyUSA
  2. 2.Polytechnic Institute of New York UniversityUSA
  3. 3.Université Libre de BruxellesBelgium

Personalised recommendations